Abstract:
Described is an apparatus of a User Equipment (UE) operable to communicate with a fifth-generation Evolved Node-B (gNB) on a wireless network. The apparatus may comprise a first circuitry, a second circuitry, and a third circuitry. The first circuitry may be operable to detect a beam failure event. The second circuitry may be operable to generate a beam failure recovery request for transmission to the gNB, in response to the beam failure event. The third circuitry may be operable to monitor for Physical Downlink Control Channel (PDCCH) in a search space configured by the gNB, subsequent to a transmission of the beam failure recovery request.
Abstract:
Embodiments of the present disclosure describe apparatuses, methods and machine-readable storage medium for Reference Signal Received Power (RSRP) measurement and allocation of Downlink (DL) transmission resources.
Abstract:
A Long Term Evolution Advanced (LTE-A) location server, user equipment (UE) and evolved Node-B (eNB) are generally described. Information may be transmitted to the UE from the location server. The transmission may be triggered by the location server or another entity requesting the UE location. The information may permit the UE to receive a discovery reference signal (DRS) from at least one eNB. The information may contain an indication of measurements to be performed using the DRS. The UE may measure Reference Signal Received Power (RSRP) or Reference Signal Time Difference (RSTD) of the DRS. The UE may send the measurement information to the location server where the UE location is estimated. The UE location may be based on measurements of the DRS and a positioning reference signal (PRS) from one or more eNBs to obtain the Observed Time Difference of Arrival (OTDOA) or Enhanced Cell ID (ECID).
Abstract:
A method for association biasing at a mobile device in a heterogeneous network (HetNet) is disclosed. The method can include the mobile device receiving coordination set information from a macro node in the HetNet. The coordination set information can include at least one low power node (LPN) identifier of at least one LPN. The mobile device can receive a request from the macro node to apply a specified reference signal (RS) biasing. The mobile device can apply the specified RS biasing to an LPN RS measurement derived from a LPN RS received from an LPN having an LPN identifier in the received coordination set information. The mobile device can associate the mobile device with the LPN when the LPN RS measurement with the specified RS biasing exceeds an association threshold.
Abstract:
Generally, this disclosure provides devices, systems and methods for subframe restricted Channel State Information (CSI) reporting with Rank Indicator (RI) inheritance. A User Equipment (UE) device may include an RI generation module to generate RIs based on a received CSI configuration from an evolved Node B (eNB) of a serving cell of the UE. The UE may also include an RI Reference Process CSI generation module to generate a first Reference CSI including a first selected RI of the generated RIs, the first selection based on a first subframe set of the received CSI configuration, and to generate a second Reference CSI including a second selected RI of the generated RIs, the second selection based on a second subframe set of the received CSI configuration. The UE may further include a Linked Process CSI generation module to generate a linked CSI including an inherited RI from the first Reference CSI.
Abstract:
Technology is discussed for extending frequency and time based approaches, such as Inter-Cell Interference Coordination (ICIC) and enhanced ICIC (eICIC), to interference mitigation for clusters within a Wireless Wide Area Network (WWAN) of transmission points with a common transmission point identity. Multiple transmission power messages correlated to different transmission point characteristics can be configured among multiple transmission points sharing the same transmission point identity. These multiple transmission power messages can be used to coordinate transmissions from adjacent transmission points on differing frequencies. Additionally, new sets of reference signals can be configured to correlate to different transmission point characteristics. These new, correlated reference signals can be used to decouple measurements used to provide feedback to one set of transmission points from reference signals transmitted by another set of transmission points with the same transmission point identity.
Abstract:
A user equipment (UE) power-cycles UE transmission modem components to reduce overall UE power consumption. For example, multiple HARQ ACK/NACK feedback bits are aggregated for a predetermined number of consecutive DL subframes, and then the feedback is transmitted in a single dedicated UL subframe so that a transmitter and power amplifier may be temporarily turned off (State 3) to reduce power consumption in the UE.
Abstract:
Various embodiments include devices, methods, computer-readable media and system configurations for reference signal generation and resource allocation. In various embodiments, a wireless communication device may include a control module, which may be operated by a processor and configured to transmit to a user equipment (“UE”) device, over a wireless communication interface, a parameter specific to the UE device; wherein the parameter is usable by the eNB to generate a user equipment-specific reference signal (“UE-RS”) to be sent to the UE device. The parameter may be usable by the UE device to identify the UE-RS to facilitate demodulation of multiple-input, multiple-output communications. In various embodiments, a control module may be configured to store, in memory, priority rules, and to determine a UE-RS resource allocated to another UE device based on a UE-RS resource allocated to the UE device and the priority rules.
Abstract:
Examples are disclosed for coordinating transmission of one or more protocol data units to a wireless device from a coordinating set of base stations. In some examples, coordinating may include exchanging information via a backhaul communication channel coupling or interconnecting the base stations included in the coordinating set of base stations. For these examples, one or more protocol data units may be transmitted to the wireless device from the coordinating set of base stations via a plurality of separate communication links based on the exchanged information. Other examples are described and claimed.
Abstract:
A technology for a power management module that is operable to reduce power consumption in a communications network. A resource availability of one or more evolved node B (eNode Bs) in the communications network can be determine to receive data traffic of a plurality of user equipment (UEs) in communication with a serving eNode B. A power consumption rate of the communications network can be calculated when the serving eNode B is placed in a power saving mode. The serving eNode B can be switched to a power savings mode when the resource availability of the one or more eNode Bs enables the plurality of UEs to be handed over from the serving eNode B to selected eNode Bs of the one or more eNode Bs.