Abstract:
The present disclosure includes memory devices and methods of operating the same. One such device includes an array of groups of memory cells, a group selector configured to select a particular group of memory cells from within the array, and a cell selector configured to select a particular memory cell from within the selected particular group of memory cells.
Abstract:
Semiconductor device assemblies having solid-state transducer (SST) devices and associated semiconductor devices, systems, and are disclosed herein. In one embodiment, a method of forming a semiconductor device assembly includes forming a support substrate, a transfer structure, and a plurality semiconductor structures between the support substrate and the transfer structure. The method further includes removing the support substrate to expose an active surface of the individual semiconductor structures and a trench between the individual semiconductor structures. The semiconductor structures can be attached to a carrier substrate that is optically transmissive such that the active surface can emit and/or receive the light through the carrier substrate. The individual semiconductor structures can then be processed on the carrier substrate with the support substrate removed. In some embodiments, the individual semiconductor structures are singulated from the semiconductor device assembly and include a section of the carrier substrate attached to each of the individual semiconductor structures.
Abstract:
Semiconductor devices and methods for making semiconductor devices are disclosed herein. A semiconductor device configured in accordance with a particular embodiment includes a substrate having a source/drain region, an interconnect, and first and second electrodes extending between first and second sides of the substrate. The first electrode includes a first contact pad and a via extending through the substrate that connects the first contact pad with the interconnect. The second electrode includes a second contact pad and a conductive feature in the substrate that connects the second contact pad with the interconnect.
Abstract:
Engineered substrates having epitaxial templates for forming epitaxial semiconductor materials and associated systems and methods are disclosed herein. In several embodiments, for example, an engineered substrate can be manufactured by forming a first semiconductor material at a front surface of a donor substrate. The first semiconductor material is transferred to first handle substrate to define a first formation structure. A second formation structure is formed to further include a second semiconductor material homoepitaxial to the first formation structure. The method can further include transferring the first portion of the second formation structure to a second handle substrate such that a second portion of the second formation structure remains at the first handle substrate.
Abstract:
Solid-state transducers (“SSTs”) and vertical high voltage SSTs having buried contacts are disclosed herein. An SST die in accordance with a particular embodiment can include a transducer structure having a first semiconductor material at a first side of the transducer structure, and a second semiconductor material at a second side of the transducer structure. The SST can further include a plurality of first contacts at the first side and electrically coupled to the first semiconductor material, and a plurality of second contacts extending from the first side to the second semiconductor material and electrically coupled to the second semiconductor material. An interconnect can be formed between at least one first contact and one second contact. The interconnects can be covered with a plurality of package materials.
Abstract:
Various embodiments of light emitting dies and solid state lighting (“SSL”) devices with light emitting dies, assemblies, and methods of manufacturing are described herein. In one embodiment, a light emitting die includes an SSL structure configured to emit light in response to an applied electrical voltage, a first electrode carried by the SSL structure, and a second electrode spaced apart from the first electrode of the SSL structure. The first and second electrode are configured to receive the applied electrical voltage. Both the first and second electrodes are accessible from the same side of the SSL structure via wirebonding.
Abstract:
Various embodiments of SST dies and solid state lighting (“SSL”) devices with SST dies, assemblies, and methods of manufacturing are described herein. In one embodiment, a SST die includes a substrate material, a first semiconductor material and a second semiconductor material on the substrate material, an active region between the first semiconductor material and the second semiconductor material, and a support structure defined by the substrate material. In some embodiments, the support structure has an opening that is vertically aligned with the active region.
Abstract:
Solid state transducer (“SST”) devices with selective wavelength reflectors and associated systems and methods are disclosed herein. In several embodiments, for example, an SST device can include a first emitter configured to emit emissions having a first wavelength and a second emitter configured to emit emissions having a second wavelength different from the first wavelength. The first and second emitters can be SST structures and/or converter materials. The SST device can further include a selective wavelength reflector between the first and second emitters. The selective wavelength reflector can be configured to at least substantially transmit emissions having the first wavelength and at least substantially reflect emissions having the second wavelength.
Abstract:
Various embodiments of SST dies and solid state lighting (“SSL”) devices with SST dies, assemblies, and methods of manufacturing are described herein. In one embodiment, a SST die includes a substrate material, a first semiconductor material and a second semiconductor material on the substrate material, an active region between the first semiconductor material and the second semiconductor material, and a support structure defined by the substrate material. In some embodiments, the support structure has an opening that is vertically aligned with the active region.
Abstract:
Various embodiments of SST dies and solid state lighting (“SSL”) devices with SST dies, assemblies, and methods of manufacturing are described herein. In one embodiment, a SST die includes a substrate material, a first semiconductor material and a second semiconductor material on the substrate material, an active region between the first semiconductor material and the second semiconductor material, and a support structure defined by the substrate material. In some embodiments, the support structure has an opening that is vertically aligned with the active region.