摘要:
A method for depositing a low dielectric constant film by flowing a oxidizing gas into a processing chamber, flowing an organosilicon compound from a bulk storage container through a digital liquid flow meter at an organosilicon flow rate to a vaporization injection valve, vaporizing the organosilicon compound and flowing the organosilicon compound and a carrier gas into the processing chamber, maintaining the organosilicon flow rate to deposit an initiation layer, flowing a porogen compound from a bulk storage container through a digital liquid flow meter at a porogen flow rate to a vaporization injection valve, vaporizing the porogen compound and flowing the porogen compound and a carrier gas into the processing chamber, increasing the organosilicon flow rate and the porogen flow rate while depositing a transition layer, and maintaining a second organosilicon flow rate and a second porogen flow rate to deposit a porogen containing organosilicate dielectric layer.
摘要:
A method for depositing a low dielectric constant film by flowing a oxidizing gas into a processing chamber, flowing an organosilicon compound from a bulk storage container through a digital liquid flow meter at an organosilicon flow rate to a vaporization injection valve, vaporizing the organosilicon compound and flowing the organosilicon compound and a carrier gas into the processing chamber, maintaining the organosilicon flow rate to deposit an initiation layer, flowing a porogen compound from a bulk storage container through a digital liquid flow meter at a porogen flow rate to a vaporization injection valve, vaporizing the porogen compound and flowing the porogen compound and a carrier gas into the processing chamber, increasing the organosilicon flow rate and the porogen flow rate while depositing a transition layer, and maintaining a second organosilicon flow rate and a second porogen flow rate to deposit a porogen containing organosilicate dielectric layer.
摘要:
An article having a protective coating for use in semiconductor applications and methods for making the same are provided. In certain embodiments, a method of coating an aluminum surface of an article utilized in a semiconductor processing chamber is provided. The method comprises providing a processing chamber; placing the article into the processing chamber; flowing a first gas comprising a carbon source into the processing chamber; flowing a second gas comprising a nitrogen source into the processing chamber; forming a plasma in the chamber; and depositing a coating material on the aluminum surface. In certain embodiments, the coating material comprises an amorphous carbon nitrogen containing layer. In certain embodiments, the article comprises a showerhead configured to deliver a gas to the processing chamber.
摘要:
In one embodiment, the invention is a guard ring for reducing particle entrapment along a moveable shaft of a substrate support. In one embodiment, the guard ring comprises a substantially annular guard ring positioned within a step formed in a sleeve that circumscribes the shaft. The guard ring is positioned to substantially seal a gap separating the shaft from the sleeve, so that the amount of particles and foreign matter that travel within or become trapped in the gap is substantially reduced. In another embodiment, a guard ring comprises a base portion having an inner perimeter and an outer perimeter, a first flange coupled to the inner perimeter, a second flange coupled to the outer perimeter, and a continuous channel separating the first flange from the second flange. The first flange is adapted to function as a spring that accommodates displacement of the shaft.
摘要:
Adhesion between a copper metallization layer and a dielectric barrier film may be promoted by stabilizing a flow of a silicon-containing precursor in a divert line leading to the chamber exhaust. The stabilized gas flow is then introduced to the processing chamber to precisely form a silicide layer over the copper. This silicidation step creates a network of strong Cu—Si bonds that prevent delamination of the barrier layer, while not substantially altering the sheet resistance and other electrical properties of the resulting metallization structure.
摘要:
A method for depositing an organosilicate layer on a substrate includes varying one or more processing conditions during a process sequence for depositing an organosilicate layer from a gas mixture comprising an organosilicon compound in the presence of RF power in a processing chamber. In one aspect, the distance between the substrate and a gas distribution manifold in the processing chamber is varied during processing. Preferably, the method of depositing an organosilicate layer minimizes plasma-induced damage to the substrate.
摘要:
A method and apparatus are disclosed for forming thin polymer layers on semiconductor substrates. In one embodiment, the method and apparatus include the vaporization of stable di-pxylylene, the pyrolytic conversion of such gaseous dimer material into reactive monomers, and the optional blending of the resulting gaseous p-xylylene monomers with one or more polymerizable materials in gaseous form capable of copolymerizing with the p-xylylene monomers to form a low dielectric constant polymerized parylene material. An apparatus is also disclosed which provides for the distribution of the polymerizable gases into the deposition chamber, for cooling the substrate down to a temperature at which the gases will condense to form a polymerized dielectric material, for heating the walls of the deposition chamber to inhibit formation and accumulation of polymerized residues thereon, and for recapturing unreacted monomeric vapors exiting the deposition chamber. An apparatus is further provided downstream of the deposition chamber to control both the flow rate or residence time of the reactive monomer in the deposition chamber as well as to control the pressure of the deposition chamber. Provision is further made for an electrical bias to permit the apparatus to function as a plasma etch chamber, for in situ plasma cleaning of the chamber between depositions, for enhancing cracking of polymerizable precursor material, for heating the walls of the chamber and for providing heat sufficient to prevent polymerization in the gas phase.
摘要:
An apparatus for in-situ control of the flow of a liquid precursor into a deposition chamber comprises a liquid injection system having a liquid injection outlet connected to a chamber inlet line upstream of the deposition chamber. The liquid injection system includes a liquid precursor supply, a carrier gas supply, a vaporizer, and a controller managing flows of the liquid precursor and carrier gas to the chamber. A bypass line is connected to the chamber inlet line and includes a bypass valve, a sonic orifice, and a pressure gauge upstream of the sonic orifice. To calibrate the flow of the liquid precursor, a flow of carrier gas is directed into the bypass line at a carrier gas sonic flow rate. A first steady state pressure is measured with the pressure gauge. The liquid precursor is vaporized and directed to the flow of carrier gas into the bypass line. A second steady state pressure is measured with the pressure gauge. Calibration information is computed using the first steady state pressure and second steady state pressure based on sonic flow theory. The calibration information is used to calibrate the controller to correct deviations in the liquid flow rate and achieve a target liquid precursor flow rate for improving wafer uniformity.
摘要:
An anodic etching system for simultaneously etching a multiplicity of substrates comprises: an etching tank for containing therein an etchant solution; a power supply connected between a first electrode and a second electrode, the first electrode and the second electrode being immersible in the etchant solution and positioned at opposite ends of the tank; and a plurality of support plates serially arranged between the first electrode and the second electrode and sealed to walls of the tank, wherein each of the plurality of support plates is configured to support at least one of the multiplicity of substrates, and wherein any consecutive pair of the plurality of support plates defines an isolated volume of the tank for containing a portion of the etchant solution. The plurality of support plates may be susceptors configured for holding the multiplicity of substrates in a chemical vapor deposition tool.
摘要:
A method and apparatus for cleaning a process chamber are provided. In one embodiment, a process chamber is provided that includes a remote plasma source and a process chamber having at least two processing regions. Each processing region includes a substrate support assembly disposed in the processing region, a gas distribution system configured to provide gas into the processing region above the substrate support assembly, and a gas passage configured to provide gas into the processing region below the substrate support assembly. A first gas conduit is configured to flow a cleaning agent from the remote plasma source through the gas distribution assembly in each processing region while a second gas conduit is configured to divert a portion of the cleaning agent from the first gas conduit to the gas passage of each processing region.