Structure and fabrication method for stackable, air-gap-containing low
epsilon dielectric layers
    62.
    发明授权
    Structure and fabrication method for stackable, air-gap-containing low epsilon dielectric layers 失效
    可堆叠,含气隙的低ε电介质层的结构和制造方法

    公开(公告)号:US6017814A

    公开(公告)日:2000-01-25

    申请号:US192133

    申请日:1998-11-13

    摘要: A structured dielectric layer and fabrication process for separating wiring levels and wires within a level on a semiconductor chip is described incorporating a lower dielectric layer having narrow air gaps to form dielectric pillars or lines and an upper dielectric layer formed over the pillars or fine lines wherein the air gaps function to substantially reduce the effective dielectric constant of the structured layer. The invention overcomes the problem of solid dielectric layers which would have the higher dielectric constant of the solid material used.

    摘要翻译: 描述了一种用于分离半导体芯片上的电平内的配线电平和电线的结构化介电层和制造工艺,其包括具有窄气隙的下介电层以形成电介质柱或线,以及形成在柱或细线上的上电介质层,其中 气隙用于大大降低结构化层的有效介电常数。 本发明克服了使用固体材料的介电常数较高的固体电介质层的问题。

    Method and apparatus for filing high aspect patterns with metal
    67.
    发明授权
    Method and apparatus for filing high aspect patterns with metal 失效
    用金属填充高方向图案的方法和装置

    公开(公告)号:US5302266A

    公开(公告)日:1994-04-12

    申请号:US951924

    申请日:1992-09-25

    摘要: An electron cyclotron resonance plasma heating apparatus system and process in which microwave energy is transmitted directly in an axial direction through an evacuated chamber to generate energetic electrons. These energetic electrons spiral around the magnetic field lines formed by the solenoid and spiral substantially parallel to the axis. A metal atom vapor source transmits the metal atom vapor into the chamber through a housing port in the chamber wall. The metal atom vapor source in the housing is out of the line of sight of the substrate. The metal atoms are ionized by the energized electrons, and these ionized metal atoms are confined to the plasma column substantially free of neutral atoms as such ionized metal approaches and contacts the substrate in said evacuated chamber. In this way, the ionized metal atoms substantially avoid contact with the wall of chamber. A sputter target of a second metal may be placed in the plane of the substrate and a bias voltage applied to the target. Atoms of the second metal are then sputtered off and ionized by the plasma and are deposited on the substrate with the first metal ions.

    摘要翻译: 电子回旋共振等离子体加热装置系统和微波能量通过真空室沿轴向直接传递以产生高能电子的过程。 这些高能电子围绕由螺线管形成的磁场线与螺旋线基本平行。 金属原子蒸汽源通过室壁中的壳体端口将金属原子蒸气传输到室中。 壳体中的金属原子蒸汽源不在衬底的视线之内。 金属原子被激发电子电离,这些离子化的金属原子被限制在基本上不含中性原子的等离子体柱上,因为这样的电离金属靠近并接触所述真空室中的衬底。 以这种方式,电离金属原子基本上避免与室的壁接触。 可以将第二金属的溅射靶放置在基板的平面中,并将偏置电压施加到靶。 然后将第二金属的原子溅射并通过等离子体离子化,并用第一金属离子沉积在基底上。

    Graphene growth on a non-hexagonal lattice
    68.
    发明授权
    Graphene growth on a non-hexagonal lattice 有权
    非六方晶格上的石墨烯生长

    公开(公告)号:US08877340B2

    公开(公告)日:2014-11-04

    申请号:US12844029

    申请日:2010-07-27

    IPC分类号: B32B9/00

    摘要: A graphene layer is formed on a crystallographic surface having a non-hexagonal symmetry. The crystallographic surface can be a surface of a single crystalline semiconductor carbide layer. The non-hexagonal symmetry surface of the single crystalline semiconductor carbide layer is annealed at an elevated temperature in ultra-high vacuum environment to form the graphene layer. During the anneal, the semiconductor atoms on the non-hexagonal surface of the single crystalline semiconductor carbide layer are evaporated selective to the carbon atoms. As the semiconductor atoms are selectively removed, the carbon concentration on the surface of the semiconductor-carbon alloy layer increases. Despite the non-hexagonal symmetry of the surface of the semiconductor-carbon alloy layer, the remaining carbon atoms can coalesce to form a graphene layer having hexagonal symmetry.

    摘要翻译: 在具有非六边形对称性的结晶表面上形成石墨烯层。 晶体表面可以是单晶半导体碳化物层的表面。 单晶半导体碳化物层的非六边形对称表面在超高真空环境中在升高的温度下退火以形成石墨烯层。 在退火过程中,单晶半导体碳化物层的非六边形表面上的半导体原子对碳原子有选择性的蒸发。 随着半导体原子被选择性地去除,半导体 - 碳合金层表面上的碳浓度增加。 尽管半导体 - 碳合金层的表面具有非六边形对称性,但剩余的碳原子可以聚结形成具有六边形对称性的石墨烯层。

    Graphene nanoribbons, method of fabrication and their use in electronic devices
    70.
    发明授权
    Graphene nanoribbons, method of fabrication and their use in electronic devices 有权
    石墨烯纳米带,其制造方法及其在电子设备中的应用

    公开(公告)号:US08361853B2

    公开(公告)日:2013-01-29

    申请号:US12902620

    申请日:2010-10-12

    IPC分类号: H01L29/06 H01L21/336

    摘要: The present disclosure provides a semiconductor structure including a nanoribbon-containing layer of alternating graphene nanoribbons separated by alternating insulating ribbons. The alternating graphene nanoribbons are parallel to a surface of an underlying substrate and, in some embodiments, might be oriented along crystallographic directions of the substrate. The alternating insulating ribbons may comprise hydrogenated graphene, i.e., graphane, fluorinated graphene, or fluorographene. The semiconductor structure mentioned above can be formed by selectively converting portions of an initial graphene layer into alternating insulating ribbons, while the non-converted portions of the initial graphene form the alternating graphene nanoribbons. Semiconductor devices such as, for example, field effect transistors, can be formed atop the semiconductor structure provided in the present disclosure.

    摘要翻译: 本公开提供了一种半导体结构,其包括由交替的绝缘带分开的交替的石墨烯纳米带的纳米带层。 交替的石墨烯纳米带平行于下面的基底的表面,并且在一些实施方案中可以沿着基底的结晶方向取向。 交替的绝缘带可以包括氢化石墨烯,即塔帕尼,氟化石墨烯或荧光荧光物质。 上述半导体结构可以通过将初始石墨烯层的部分选择性地转换为交替绝缘带而形成,而初始石墨烯的未转化部分形成交替的石墨烯纳米带。 诸如场效应晶体管的半导体器件可以形成在本公开中提供的半导体结构的顶部。