Abstract:
Non-volatile resistive-switching memories are described, including a memory element having a first electrode, a second electrode, a metal oxide between the first electrode and the second electrode. The metal oxide switches using bulk-mediated switching, has a bandgap greater than 4 electron volts (eV), has a set voltage for a set operation of at least one volt per one hundred angstroms of a thickness of the metal oxide, and has a leakage current density less than 40 amps per square centimeter (A/cm2) measured at 0.5 volts (V) per twenty angstroms of the thickness of the metal oxide.
Abstract:
Methods for processing a substrate utilizing a backside layer are presented including: receiving a substrate, the substrate including a front side and a backside; forming the backside layer on the backside of the substrate; and performing at least one processing operation on the front side of the substrate, wherein the backside layer protects the backside of the substrate during the performing the at least one processing operation. In some embodiments, methods further include cross-linking the backside layer such that the backside layer is stabilized. In some embodiments, methods further include: functionalizing the backside layer, where the functionalizing alters a chemical characteristic of the backside layer, and where the functionalizing includes a functional group such as: a hydroxyl group, an amino group, a mercapto group, a fluorine group, a chlorine group, an alkene group, an aryle group, and a carboxy group.
Abstract:
A method of depositing a duffusion barrier layer with overlying conductive layer or fill which lowers resistivity of a semiconductor device interconnect. The lower resistivity is achieved by inducing the formation of alpha tantalum within a tantalum-comprising barrier layer.
Abstract:
Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed by depositing a metal-containing material on a silicon-containing material. The metal-containing material may be oxidized to form a resistive-switching metal oxide. The silicon in the silicon-containing material reacts with the metal in the metal-containing material when heat is applied. This forms a metal silicide lower electrode for the nonvolatile memory element. An upper electrode may be deposited on top of the metal oxide. Because the silicon in the silicon-containing layer reacts with some of the metal in the metal-containing layer, the resistive-switching metal oxide that is formed is metal deficient when compared to a stoichiometric metal oxide formed from the same metal.
Abstract:
A metal/metal nitride barrier layer for semiconductor device applications. The barrier layer is particularly useful in contact vias where high conductivity of the via is important, and a lower resistivity barrier layer provides improved overall via conductivity.
Abstract:
The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
Abstract:
The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
Abstract:
The present invention relates to an enhanced sequential atomic layer deposition (ALD) technique suitable for deposition of barrier layers, adhesion layers, seed layers, low dielectric constant (low-k) films, high dielectric constant (high-k) films, and other conductive, semi-conductive, and non-conductive films. This is accomplished by 1) providing a non-thermal or non-pyrolytic means of triggering the deposition reaction; 2) providing a means of depositing a purer film of higher density at lower temperatures; and, 3) providing a faster and more efficient means of modulating the deposition sequence and hence the overall process rate resulting in an improved deposition method.
Abstract:
Substrate processing systems and methods are described for processing substrates having two or more regions. The processing includes one or more of molecular self-assembly and combinatorial processing. At least one of materials, processes, processing conditions, material application sequences, and process sequences is different for the processing in at least one region of the substrate relative to at least one other region of the substrate. Processing systems are described that include numerous processing modules. The modules include a site-isolated reactor (SIR) configured for one or more of molecular self-assembly and combinatorial processing of a substrate.
Abstract:
We disclose a method of applying a sculptured layer of material on a semiconductor feature surface using ion deposition sputtering, wherein a surface onto which the sculptured layer is applied is protected to resist erosion and contamination by impacting ions of a depositing layer, said method comprising the steps of a) applying a first portion of a sculptured layer with sufficiently low substrate bias that a surface onto which said sculptured layer is applied is not eroded away or contaminated in an amount which is harmful to said semiconductor device performance or longevity; and b) applying a subsequent portion of said sculptured layer with sufficiently high substrate bias to sculpture a shape from said the first portion, while depositing additional layer material. The method is particularly applicable to the sculpturing of barrier layers, wetting layers, and conductive layers upon semiconductor feature surfaces and is especially helpful when the conductive layer is copper. In the application of a barrier layer, a first portion of barrier layer material is deposited on the substrate surface using standard sputtering techniques or using an ion deposition plasma, but in combination with sufficiently low substrate bias voltage (including at no applied substrate voltage) that the surfaces impacted by ions are not sputtered in an amount which is harmful to device performance or longevity. Subsequently, a second portion of barrier material is applied using ion deposition sputtering at increased substrate bias voltage which causes resputtering (sculpturing) of the first portion of barrier layer material, while enabling a more anisotropic deposition of newly depositing material. A conductive material, and particularly a copper seed layer applied to the feature may be accomplished using the same sculpturing technique as that described above with reference to the barrier layer.