Abstract:
The invention provides compositions and methods relating to self-assembly of structures of various size and shape complexity. The composition include synthetic single-stranded polymers having a backbone and pre-determined linear arrangement of monomers.
Abstract:
Provided is a method of forming a microsphere having a structural color, which includes providing a composition for generating a structural color including a curable material and magnetic nanoparticles dispersed in the curable material, forming an emulsion by adding the composition for generating a structural color to an immiscible solvent, arranging the magnetic nanoparticles located in the emulsion droplet of the curable material in a one-dimensional chain structure by applying a magnetic field to the emulsion, and fixing the chain structure by curing the emulsion droplet.
Abstract:
Disclosed is a simplified process for producing magnetic polymer particles. The process comprises: (a) providing a composition having a liquid monomer which is radical polymerizable, a radical initiator soluble in the monomer, a steric stabilizer, and a ferrofluid comprising surfactant-coated colloidal magnetic particles in a carrier fluid which is miscible with the monomer; (b) preparing an emulsion from a polar solvent which is immiscible with the monomer, and the composition of step (a); (c) adding seed polymer particles to the emulsion, mixing to form a seeded emulsion, and incubating the seeded emulsion, thereby swelling the seed polymer particles; and (d) activating the radical initiator and polymerizing the monomer in the swollen seed polymer particles; thereby producing the magnetic polymer particles. The process forms monodisperse magnetic particles. The particles are characterized by a uniform distribution of magnetic material, and an absence of magnetite bleeding.
Abstract:
A multi-layered structure comprising an induction activation layer comprising a blend of (a) a first thermoplastic polymer, (b) a plurality of first particles, each said first particle comprising (i) a core comprising one or more magnetic materials and (ii) a shell comprising silicon dioxide; and (c) optionally a plurality of second particles, each said second particle comprising heat conducting particles; and a sealant, wherein the sealant exhibits a melting point equal to or lower than any other layer in the multi-layered structure, wherein the induction activation layer and sealant are in direct or indirect thermal contact is provided.
Abstract:
Methods and systems for reflowing an adhesive are described. The adhesive may be reflowed by applying an alternating magnetic field at a particular frequency selected to be natural resonant frequency resonant of magnetizable material embedded in the adhesive. The alternating magnetic field at the particular frequency resonates the magnetizable material, inductively producing heat. The heat reflows the adhesive.
Abstract:
A magnetic powder is obtained by removing a dispersion medium from a magnetic fluid that includes magnetic particles, a dispersant and the dispersion medium. A magnetic powder composition includes the magnetic powder and a resin material, and a magnetic powder composition molded body is obtained therefrom. A method of producing a magnetic powder includes removing a dispersion medium from a magnetic fluid containing magnetic particles, a dispersant and the dispersion medium, and powdering a solid component obtained by removing the dispersion medium. A method of producing a magnetic powder composition and a method of producing a magnetic powder composition molded product are also provided.
Abstract:
A soft magnetic thermosetting adhesive film includes a magnetic layer and a surface layer laminated on one side of the magnetic layer. The magnetic layer is formed from a magnetic composition containing acrylic resin, epoxy resin, phenol resin, and soft magnetic particles. The surface layer is formed from a surface layer composition containing acrylic resin, epoxy resin, and phenol resin and not substantially containing soft magnetic particles.
Abstract:
A composition comprising: (a) a thermoplastic polymer; (b) a plurality of particles, each said particle having core-shell structure and comprising, (i) a core comprising one or more magnetic materials and (ii) a shell comprising silicon dioxide; wherein the composition comprises particles (b) in an amount from 2 to 15 wt % is provided. Further provided is a connector comprising the composition, a system comprising the connector and a process for improving bonding between two or more means for conveying fluids.
Abstract:
In accordance with the present invention, novel superparamagnetic magneto-dielectric polymer nanocomposites are synthesized using a novel process. The tunability of the dielectric/magnetic properties demonstrated by this novel highly-viscous solvent-free polymer nanocomposite that is amenable to building 3D electromagnetic structures/devices by using processes such as 3D printing, compression molding or injection molding, when an external DC magnetic field is applied, exceeds what has been previously reported for magneto-dielectric polymer nanocomposite materials.
Abstract:
The present invention relates to polymer beads comprising a polymeric matrix and having a pitted surface, the polymeric matrix (i) comprising polymerised monomer residues of (a) at least one mono-ethylenically unsaturated monomer, and (b) at least one crosslinking monomer having at least two ethylenically unsaturated groups separated by at least 4 consecutive acyclic atoms, and (ii) having distributed therethrough solid particulate material and polymeric porogen.