摘要:
A chip stack package is provided, wherein semiconductor chips having different die sizes are stacked by arranging pads in a scribe region through a redistribution process, so that the thickness of the package can be reduced. A method of fabricating the chip stack package is also provided. In the chip stack package, a plurality of circuit patterns are arranged on one surface of a substrate, and a unit semiconductor chip is mounted thereon. The unit semiconductor chip includes a plurality of semiconductor chips sequentially stacked on the substrate. The semiconductor chips of the unit semiconductor chip have different die sizes. One of the semiconductor chips includes a plurality of first pads arranged in a first chip region, and the other semiconductor chips include second pads arranged in a scribe region at an outside of a second chip region defined by the scribe region.
摘要:
A semiconductor package and a method of fabricating the same. The method includes providing a semiconductor substrate on which a chip pad is formed. A wire redistribution layer connected to the chip pad is formed. An insulating layer which includes an opening exposing a portion of the wire redistribution layer is formed. A metal ink is applied within the opening to thereby form a bonding pad. The applied metal ink within the opening and the insulating layer can be cured simultaneously.
摘要:
Provided is an amplifier circuit having a constant output swing range and a stable delay time, where the amplifier circuit includes a first bias unit, a second bias unit, a comparison unit, and an amplifier unit, and the first bias unit responds to an internal reference signal with a predetermined voltage level and maintains constant the amount of a first current, and the second bias unit receives an external reference signal, responds to a control voltage, and controls the amount of a second current to be the same as the amount of the first current, and the comparison unit compares a voltage level of a first node with a voltage level of a second node, and controls a voltage level of the control voltage according to the comparison result, and the amplifier unit compares a voltage level of an external input signal with a voltage level of the external reference signal, amplifies and outputs a voltage difference between the two compared signals, responds to the control voltage, and controls the amount of a third current to be the same as the amount of the first current although the level of the external reference signal is varied, such that the amplifier circuit and a circuit for receiving data can maintain a constant output swing range and a stable delay time irrespective of variations in the voltage levels of the external input signal or the external reference signal.
摘要:
A method of forming a solder bump may involve forming a first photoresist pattern on a wafer having a pad. The first photoresist pattern may have an opening that exposes a portion of the pad. A first under bump metallurgy (UBM) layer may be formed on the pad, and a second UBM layer may be formed on the first photoresist pattern. A second photoresist pattern may be formed that exposes the first UBM layer and covers the second UBM layer. A solder bump may be formed in the opening. The second photoresist pattern and the first photoresist pattern may be removed using a stripper, thereby removing the second UBM layer by a lift-off method.
摘要:
A reinforced solder bump connector structure is formed between a contact pad arranged on a semiconductor chip and a ball pad arranged on a mounting substrate. The semiconductor chip includes at least one reinforcing protrusion extending upwardly from a surface of an intermediate layer. The mounting substrate includes at least one reinforcing protrusion extending upwardly from a ball pad, the protrusions from both the chip and the substrate being embedded within the solder bump connector. In some configurations, the reinforcing protrusion from the contact pad and the ball pad are sized and arranged to have overlapping under portions. These overlapping portions may assume a wide variety of configurations that allow the protrusions to overlap without contacting each other including pin arrays and combinations of surrounding and surrounded elements. In each configuration, the reinforcing protrusions will tend to suppress crack formation and/or crack propagation thereby improving reliability.
摘要:
Disclosed is a synchronous mirror delay circuit for generating an internal clock signal synchronized with an external clock signal, comprising: a clock buffer circuit that generates a reference clock signal in response to the external clock signal; a delay monitor circuit that delays the reference clock signal; a forward delay array for delaying an output clock signal of the delay monitor circuit to generate delay clock signals; a mirror control circuit that receives the delay clock signals and the reference clock signal to detect one delay clock signal synchronized with the reference clock signal among the delay clock signals; a backward delay array that delays the delay clock signal detected by the mirror control circuit to output a synchronous clock signal; a delay circuit that delays an asynchronous clock signal output through the forward delay array; and a clock driving circuit that outputs the delayed asynchronous clock signal as the internal clock signal when the reference clock signal is not synchronized with one of the delay clock signals.
摘要:
A programmable impedance controller and a method of operating prevent or substantially reduce internal noise and an influence from external noise lasting for a long time. The programmable impedance controller for comparing a pad voltage of a pad connected to an external determination impedance with a reference voltage, and for outputting an impedance control signal, and for performing a digital coding to an impedance code corresponding to the impedance control signal, includes a clock controller and a counter. The clock controller outputs a first clock signal in a reset mode and outputs a second clock signal in an operating mode, in response to an applied clock signal. The counter sequentially updates code data, one code step per clock period, in response to the first clock signal in the reset mode, and outputs update code data. In an operating mode, the counter outputs the update code data updated in the reset mode in response to the second clock signal.
摘要:
An internal clock generating circuit of a semiconductor device includes: a delay chain having a plurality of delay units for generating multi-phase clocks by adjusting an input clock; a thermometer for outputting a thermometer code value in response to an input selection data; a multiplexer for selectively outputting one of a plurality of clocks input from the delay chain in response to the thermometer code value of the thermometer; and a pulse regenerator for outputting an adjusted internal clock by restoring a pulse form of the clock output from the multiplexer into its original state and controlling the delay thereof as much as desired.
摘要:
Disclosed is a programmable impedance control circuit, comprising a voltage divider, the voltage divider comprising an MOS array supplied with a first voltage and an external resistance having an external impedance equal to N times said external resistance. The voltage divider outputs a second voltage. A reference voltage generator is provided for generating a third voltage corresponding to N/(N+M) times said first voltage as a reference voltage for said second voltage, and wherein M times internal impedance is used for N times external impedance (N=M or N≠M).
摘要翻译:公开了一种可编程阻抗控制电路,包括分压器,该分压器包括提供有第一电压的MOS阵列和具有等于所述外部电阻的N倍的外部阻抗的外部电阻。 分压器输出第二个电压。 参考电压发生器用于产生对应于所述第一电压的N /(N + M)倍的第三电压作为所述第二电压的参考电压,并且其中M次内部阻抗用于N次外部阻抗(N = M 或N≤M)。
摘要:
The invention relates to a semiconductor memory device and a method for generating an internal clock, the circuit of the semiconductor device including: a receiver for receiving an external clock; a delay compensation circuit for receiving an output of the receiver and delaying it by as much as the compensation delay time and control delay time subtracted out of a cycle of the external clock; an external control delay part for delaying an output of the delay compensation circuit by as much as the control delay time and unit increase/decrease delay time in response to an external control code; and an internal clock driver for driving an output of the external control delay part and generating an internal clock centered to externally applied data, thereby performing an accurate timing control to an external clock without loss of performance.