Abstract:
Some embodiments include methods of forming memory cells. A series of rails is formed to include bottom electrode contact material. Sacrificial material is patterned into a series of lines that cross the series of rails. A pattern of the series of lines is transferred into the bottom electrode contact material. At least a portion of the sacrificial material is subsequently replaced with top electrode material. Some embodiments include memory arrays that contain a second series of electrically conductive lines crossing a first series of electrically conductive lines. Memory cells are at locations where the electrically conductive lines of the second series overlap the electrically conductive lines of the first series. First and second memory cell materials are within the memory cell locations. The first memory cell material is configured as planar sheets and the second memory cell material is configured as upwardly-opening containers.
Abstract:
A method of forming a conductive via comprises forming a structure comprising an elevationally-extending-conductive via and a conductive line electrically coupled to and crossing above the conductive via. The conductive line comprises first conductive material and the conductive via comprises second conductive material of different composition from that of the first conductive material. The conductive line and the conductive via respectively having opposing sides in a vertical cross-section. First insulator material having k no greater than 4.0 is formed laterally outward of the opposing sides of the second conductive material of the conductive via selectively relative to the first conductive material of the opposing sides of the conductive line. The first insulator material is formed to a lateral thickness of at least 40 Angstroms in the vertical cross-section. Second insulator material having k greater than 4.0 is formed laterally outward of opposing sides of the first insulator material in the vertical cross-section. Additional method aspects, including structure independent of method of fabrication, are disclosed.
Abstract:
Methods of forming multi-tiered semiconductor devices are described, along with apparatus and systems that include them. In one such method, an opening is formed in a tier of semiconductor material and a tier of dielectric. A portion of the tier of semiconductor material exposed by the opening is processed so that the portion is doped differently than the remaining semiconductor material in the tier. At least substantially all of the remaining semiconductor material of the tier is removed, leaving the differently doped portion of the tier of semiconductor material as a charge storage structure. A tunneling dielectric is formed on a first surface of the charge storage structure and an intergate dielectric is formed on a second surface of the charge storage structure. Additional embodiments are also described.
Abstract:
A method of forming contacts for a semiconductor device structure comprises forming contact holes extending into neighboring semiconductive pillars and into a nitride material of nitride-capped electrodes. Composite structures are formed within the contact holes and comprise oxide structures over sidewalls of the contact holes and nitride structures over the oxide structures. Conductive structures are formed over inner sidewalls of the composite structures. Additional nitride-capped electrodes are formed over the conductive structures and extend perpendicular to the nitride-capped electrodes. Pairs of nitride spacers are formed over opposing sidewalls of the additional nitride-capped electrodes and are separated from neighboring pairs of nitride spacers by apertures extending to upper surfaces of a portion of the neighboring semiconductive pillars. Portions of the oxide structures are removed to expose sidewalls of the portion of the neighboring semiconductive pillars. Semiconductor device structures and additional methods are also described.
Abstract:
Memory devices and methods of making memory devices are shown. Methods and configurations as shown provide folded and vertical memory devices for increased memory density. Methods provided reduce a need for manufacturing methods such as deep dopant implants.
Abstract:
A method of forming conductive vias comprises forming at least three parallel line constructions elevationally over a substrate. The line constructions individually comprise a dielectric top and dielectric sidewalls. A conductive line is formed elevationally over and angles relative to the line constructions. The conductive line comprises a longitudinally continuous portion and a plurality of conductive material extensions that individually extend elevationally inward between immediately adjacent of the line constructions. Etching is conducted elevationally through the longitudinally continuous portion and partially elevationally into the extensions at spaced locations along the conductive line to break-up the longitudinally continuous portion to form individual conductive vias extending elevationally between immediately adjacent of the line constructions. Methods of forming a memory array are also disclosed. Arrays of conductive vias independent of method of manufacture are also disclosed.
Abstract:
A semiconductor device may include a memory array including vertical memory cells connected to a digit line, word lines, and a body connection line. A row or column of the memory array may include one or more pillars connected to the body connection line. A voltage may be applied to the body connection line through at least one pillar connected to the body connection line. Application of the voltage to the body connection line may reduce floating body effects. Methods of forming a connection between at least one pillar and a voltage supply are disclosed. Semiconductor devices including such connections are also disclosed.
Abstract:
A method of forming circuitry components includes forming a stack of horizontally extending and vertically overlapping features. The stack has a primary portion and an end portion. At least some of the features extend farther in the horizontal direction in the end portion moving deeper into the stack in the end portion. Operative structures are formed vertically through the features in the primary portion and dummy structures are formed vertically through the features in the end portion. Horizontally elongated openings are formed through the features to form horizontally elongated and vertically overlapping lines from material of the features. The lines individually extend from the primary portion into the end portion, and individually laterally about sides of vertically extending portions of both the operative structures and the dummy structures. Sacrificial material that is elevationally between the lines is at least partially removed in the primary and end portions laterally between the horizontally elongated openings. Other aspects and implementations are disclosed.
Abstract:
A method of forming a resistive memory element comprises forming an oxide material over a first electrode. The oxide material is exposed to a plasma process to form a treated oxide material. A second electrode is formed on the treated oxide material. Additional methods of forming a resistive memory element, as well as related resistive memory elements, resistive memory cells, and resistive memory devices are also described.
Abstract:
Some embodiments include NAND memory constructions. The constructions may contain semiconductor material pillars extending upwardly between dielectric regions, with individual pillars having a pair of opposing vertically-extending sides along a cross-section. First conductivity type regions may be along first sides of the pillars, and second conductivity type regions may be along second sides of the individual pillars; with the second conductivity type regions contacting interconnect lines. Vertical NAND strings may be over the pillars, and select devices may selectively couple the NAND strings with the interconnect lines. The select devices may have vertical channels directly against the semiconductor material pillars and directly against upper regions of the first and second conductivity type regions. Some embodiments include methods of forming NAND memory constructions.