Method of preparing a diaphragm of high purity polysilicon with multi-gas microwave source
    81.
    发明申请
    Method of preparing a diaphragm of high purity polysilicon with multi-gas microwave source 审中-公开
    用多气体微波源制备高纯度多晶硅膜的方法

    公开(公告)号:US20100323121A1

    公开(公告)日:2010-12-23

    申请号:US12487624

    申请日:2009-06-18

    IPC分类号: C23C14/14

    摘要: A method of preparing a diaphragm of high purity polysilicon continuously, includes: impacting high purity silane gas molecules with a high temperature Argon ion beam source in a microwave resonator, so as to make an energy of the high purity silane gas molecules close to a particle binding energy of formation and form grains on a surface of the substrate when the high purity silane gas molecules reach a substrate of the microwave resonator, wherein the particle binding energy is more than 50 kev, the grains have diameters of about 50 nm.

    摘要翻译: 连续制备高纯度多晶硅膜的方法包括:在微波谐振器中用高温氩离子束源冲击高纯硅烷气体分子,使高纯度硅烷气体分子靠近颗粒的能量 当高纯度硅烷气体分子到达微波谐振器的衬底时,形成结合能并在衬底的表面上形成晶粒,其中颗粒结合能大于50kev,晶粒直径约为50nm。

    Processing system
    82.
    发明申请
    Processing system 审中-公开
    处理系统

    公开(公告)号:US20100024730A1

    公开(公告)日:2010-02-04

    申请号:US12378634

    申请日:2009-02-18

    IPC分类号: C23C16/54

    摘要: A processing system for processing an object (3) is provided, wherein the processing system is adapted, to focus a first energy beam, in particular an electron beam (11), and a second energy beam, in particular an ion beam (21), on a focusing region (29) in which a object (3) to be processed is arrangeable. A processing chamber wall (35) having two openings (38, 39) for traversal of both energy beams and a connector (37) for supplying process gas delimits a processing chamber (45) from a vacuum chamber (2) of the processing system. Processing the object by activating the process gas through one of the energy beams and inspecting the object via one of the energy beams is enabled for different orientations of the object relative to a propagation direction of one of the energy beams.

    摘要翻译: 提供了一种用于处理物体(3)的处理系统,其中处理系统适于聚焦第一能量束,特别是电子束(11)和第二能量束,特别是离子束(21) 在可以配置被处理物体(3)的聚焦区域(29)上。 具有用于穿过能量束的两个开口(38,39)和用于供给处理气体的连接器(37))的处理室壁(35)从处理系统的真空室(2)界定处理室(45)。 通过激活能量束中的一个能量束并通过其中一个能量束检查物体来处理物体,能够使物体相对于能量束之一的传播方向的不同取向。

    Bi-axial texturing of high-K dielectric films to reduce leakage currents
    83.
    发明授权
    Bi-axial texturing of high-K dielectric films to reduce leakage currents 失效
    高K电介质膜的双轴纹理化以减少漏电流

    公开(公告)号:US07619272B2

    公开(公告)日:2009-11-17

    申请号:US11007392

    申请日:2004-12-07

    IPC分类号: H01L29/76

    摘要: The present invention is directed to a method of fabricating a high-K dielectric films having a high degree of crystallographic alignment at grain boundaries of the film. A disclosed method involves providing a substrate and then depositing a material used in forming the high-K dielectric film and also using an ion beam to assist in the preferential formation of crystal lattices having a selected crystallographic orientation. The resultant dielectric film having a high degree of crystallographic alignment at grain boundaries of the film. Another disclosed method involves providing a substrate and then angularly depositing a material onto the substrate in order to assist in the preferential formation of crystal lattices having a selected crystallographic orientation. The resultant dielectric film having a high degree of crystallographic alignment at grain boundaries of the film.

    摘要翻译: 本发明涉及制造在膜的晶界处具有高度晶体取向度的高K电介质膜的方法。 所公开的方法包括提供衬底,然后沉积用于形成高K电介质膜的材料,并且还使用离子束来辅助优选形成具有选定结晶取向的晶格。 所得的电介质膜在膜的晶界处具有高度的结晶取向度。 另一公开的方法包括提供衬底,然后将材料成角度地沉积到衬底上,以帮助优先形成具有选定结晶取向的晶格。 所得的电介质膜在膜的晶界处具有高度的结晶取向度。

    Electron beam processing method
    85.
    发明申请
    Electron beam processing method 有权
    电子束处理方法

    公开(公告)号:US20050276932A1

    公开(公告)日:2005-12-15

    申请号:US10867865

    申请日:2004-06-15

    IPC分类号: C23C16/00 C23C16/48 C23C16/52

    CPC分类号: C23C16/486 C23C16/52

    摘要: A microscopic projection or a characteristic pattern are formed in the vicinity of a region to be processed before processing using electron beam CVD, during processing an image of a region containing the projection or pattern formed by electron beam CVD is captured to obtain a current position of the projection or pattern, a difference between the position before staring and the current position is treated as a drift amount and processing is restarted at a region that has been subjected to microscopic adjustment of the electron irradiation region.

    摘要翻译: 在使用电子束CVD处理之前,在要处理的区域附近形成微观投影或特征图案,在处理期间,捕获包含通过电子束CVD形成的突起或图案的区域的图像,以获得当前位置 将投影或图案之间的位置之间的差异与当前位置之间的差值作为漂移量进行处理,并且在经过电子照射区域的微观调整的区域重新开始处理。

    Fabrication of nano-scale temperature sensors and heaters
    86.
    发明授权
    Fabrication of nano-scale temperature sensors and heaters 失效
    制造纳米级温度传感器和加热器

    公开(公告)号:US06905736B1

    公开(公告)日:2005-06-14

    申请号:US10084688

    申请日:2002-02-27

    摘要: The method for the fabrication of nano scale temperature sensors and nano scale heaters using focused ion beam (FIB) techniques. The process used to deposit metal nano strips to form a sensor is ion beam assisted chemical vapor deposition (CVD). The FIB Ga+ ion beam can be used to decompose W(CO)6 molecules to deposit a tungsten nano-strip on a suitable substrate. The same substrate can also be used for Pt nano-strip deposition. The precursors for the Pt can be trimethyl platinum (CH3)3Pt in the present case. Because of the Ga+ beam used in the deposition, both Pt and W nano-strips can contain a certain percentage of Ga impurities, which we denoted as Pt(Ga) and W(Ga) respectively. Our characterization of the response of this Pt(Ga)/W(Ga) nano scale junction indicates it has a temperature coefficient of approximately 5.4 mV/° C. This is a factor of approximately 130 larger than the conventional K-type thermocouples.

    摘要翻译: 使用聚焦离子束(FIB)技术制造纳米级温度传感器和纳米级加热器的方法。 用于沉积金属纳米带以形成传感器的方法是离子束辅助化学气相沉积(CVD)。 FIB Ga + +离子束可用于分解W(CO)6分子,以将钨纳米带沉积在合适的基底上。 相同的衬底也可以用于Pt纳米带沉积。 在这种情况下,Pt的前体可以是三甲基铂(CH 3 3)3 N 3 Pt。 由于沉积中使用的Ga + + +光束,Pt和W纳米条带都可以包含一定百分比的Ga杂质,我们分别表示为Pt(Ga)和W(Ga)。 我们对Pt(Ga)/ W(Ga)纳米级结的响应的表征表明其具有约5.4mV /℃的温度系数。这是比常规K型热电偶大约130倍的因子。