Quantum effective device and process for its production
    84.
    发明授权
    Quantum effective device and process for its production 失效
    量子有效装置及其生产工艺

    公开(公告)号:US5134091A

    公开(公告)日:1992-07-28

    申请号:US678434

    申请日:1991-04-01

    Abstract: A quantum effective device and its method of manufacture are disclosed, wherein said device comprises quantum well boxes composes of a semiconductor substrate and a compound semiconductor on the surface of the semiconductor substrate at least comprising a first and a second elemental component and a semiconductor overlayer overlying said quantum well boxes and the surface portion of the exposed semiconductor substrate and wherein the quantum well boxes have an epitaxially grown single crystal structure obtained by depositing fine droplets of liquid phase composed of the first elemental component on the surface of the semiconductor substrate in the heated state and then incorporating a second elemental component different from the first elemental component in said droplets.

    Abstract translation: 公开了一种量子有效装置及其制造方法,其中所述装置包括由半导体衬底和半导体衬底的表面上的化合物半导体构成的量子阱盒,该半导体衬底至少包括第一和第二元素组件和半导体覆层 所述量子阱盒和暴露的半导体衬底的表面部分,并且其中量子阱盒具有外延生长的单晶结构,其通过在半导体衬底的表面上沉积由第一元素组分构成的液相的微小液滴而被加热 然后加入与所述液滴中的第一元素成分不同的第二元素成分。

    Process for II-VI compound epitaxy
    85.
    发明授权
    Process for II-VI compound epitaxy 失效
    II-VI化合物外延工艺

    公开(公告)号:US4920067A

    公开(公告)日:1990-04-24

    申请号:US253609

    申请日:1988-10-05

    Applicant: Jamie Knapp

    Inventor: Jamie Knapp

    Abstract: Hg.sub.1-x Cd.sub.x Te, Hg.sub.1-x Zn.sub.x Te and other related II-VI ternary semiconductor compounds are important strategic materials for photovoltaic infrared detector applications. Liquid phase epitaxy employing a tellurium-rich molten nonstoichiometric solution is an accepted technology for thin film epitaxial crystal growth.This present invention describes a crystal growth process employing specially encapsulated graphite components which directly facilitate a high volume, high quality large area epitaxial layer production.

    Abstract translation: Hg1-xCdxTe,Hg1-xZnxTe和其他相关的II-VI三元半导体化合物是光伏红外探测器应用的重要战略材料。 使用富碲熔融非化学计量溶液的液相外延是薄膜外延晶体生长的公认技术。 本发明描述了采用特别封装的石墨组分的晶体生长方法,其直接促进了大体积,高质量的大面积外延层生产。

    Method for depositing materials containing tellurium and product
    87.
    发明授权
    Method for depositing materials containing tellurium and product 失效
    用于沉积含碲和产品的材料的方法

    公开(公告)号:US4828938A

    公开(公告)日:1989-05-09

    申请号:US851004

    申请日:1986-04-11

    Abstract: A method for chemical vapor deposition of materials containing tellurium, such as cadmium telluride and mercury cadmium telluride, wherein the reactant source of the tellurium is a tellurophene or methyltellurol. These reactant sources have high vapor pressures, and the reactant source vapors emitted from the reactant sources have decomposition temperatures of less than about 300.degree. C., so that deposition may be accomplished at low temperatures of about 250.degree. C. The reactant source vapor containing tellurium is mixed with a reactant source vapor containing another substance to be codeposited, such as dimethylcadmium or dimethylmercury, and contacted with a substrate maintained at the deposition temperature, the deposition being preferably accomplished in an inverted vertical chemical vapor deposition reactor.

    Abstract translation: 用于化学气相沉积包含碲的材料的方法,例如碲化镉和碲化汞镉,其中碲的反应物源是一种特氟氯丙烯或甲基碲酚。 这些反应物源具有高蒸气压,并且从反应物源排出的反应物源蒸气具有小于约300℃的分解温度,使得可以在约250℃的低温下进行沉积。含有 将碲与含有待共沉积的另一物质的反应物源蒸气混合,例如二甲基镉或二甲基汞,并与保持在沉积温度的基材接触,沉积优选在倒置的垂直化学气相沉积反应器中完成。

    Composition control of CSVPE HgCdTe
    89.
    发明授权
    Composition control of CSVPE HgCdTe 失效
    CSVPE HgCdTe的组成控制

    公开(公告)号:US4487813A

    公开(公告)日:1984-12-11

    申请号:US536018

    申请日:1983-09-26

    Applicant: Robert E. Kay

    Inventor: Robert E. Kay

    Abstract: Method for growing HgCdTe (15) upon a CdTe substrate (5) using a HgTe source (3) and close-spaced vapor phase epitaxy (CSVPE). A processing temperature T of between 520.degree. C. and 625.degree. C. is employed over a processing time t of between approximately 1/4 and 4 hours. The thickness A of the grown HgCdTe (15) is a linear function of processing time t. The mole fraction x of cadmium in the HgCdTe (15) is a linear function of temperature T and an exponential function of the mole fraction y of mercury in the source (3). The lower the relative amount of mercury in the source (3), the greater the relative amount of mercury in the end product (15), and vice versa. Any crystal plane and any axial orientation of the CdTe substrate (5) can be used without affecting the rate of growth of the HgCdTe (15), the single crystal nature of the HgCdTe (15), or the mirror-like finish of its surface. At least 90% of the transition between the CdTe substrate (5) and the grown HgCdTe layer (15) occurs within the first 20% of the HgCdTe layer (15); for distances greater than this away from the substrate (5), the HgCdTe (15) exhibits a substantially uniform x.

    Abstract translation: 使用HgTe源(3)和紧密间隔的气相外延(CSVPE)在CdTe衬底(5)上生长HgCdTe(15)的方法。 在大约1/4至4小时之间的处理时间t内采用520℃至625℃之间的加工温度T. 生长的HgCdTe(15)的厚度A是处理时间t的线性函数。 HgCdTe(15)中镉的摩尔分数x是温度T的线性函数,以及源(3)中汞的摩尔分数y的指数函数。 源(3)中汞的相对量越低,最终产品(15)中汞的相对量越大,反之亦然。 可以使用CdTe基板(5)的任何晶面和任何轴向取向,而不影响HgCdTe(15)的生长速率,HgCdTe(15)的单晶性质或其表面的镜面光洁度 。 CdTe衬底(5)和生长的HgCdTe层(15)之间的至少90%的转变发生在HgCdTe层(15)的前20%内; 对于远离衬底(5)的距离,HgCdTe(15)表现出基本均匀的x。

Patent Agency Ranking