摘要:
An N-type polysilicon crystal, a manufacturing method thereof, and an N-type polysilicon wafer are provided. The N-type polysilicon crystal has a slope of resistivity and a slope of defect area percentage. When the horizontal axis is referred to solidified fraction and the vertical axis is referred to resistivity presented by a unit of Ohm·cm (Ω·cm), the slope of resistivity is 0 to −1.8 at the solidified fraction of 0.25 to 0.8. When the horizontal axis is referred to solidified fraction and the vertical axis is referred to defect area percentage (%), the slope of defect area percentage is less than 2.5 at the solidified fraction of 0.4 to 0.8.
摘要:
A crystalline silicon ingot and a method of fabricating the same are disclosed. The crystalline silicon ingot of the invention includes multiple silicon crystal grains growing in a vertical direction of the crystalline silicon ingot. The crystalline silicon ingot has a bottom with a silicon crystal grain having a first average crystal grain size of less than about 12 mm. The crystalline silicon ingot has an upper portion, which is about 250 mm away from said bottom, with a silicon crystal grain having a second average crystal grain size of greater than about 14 mm.
摘要:
A method for manufacturing an isolating layer onto a crucible includes the steps as follows: providing a spraying device for the following spraying steps; heating the crucible and measuring the heated crucible to get a first temperature; spraying a slurry on the inner wall of the crucible to form an isolating layer by a spraying unit with a predetermined spraying manner; measuring the isolating layer to get a second temperature; obtaining a value for the difference between the first and second temperatures and judging whether the difference value in a within predetermined difference scope or not, in which the predetermined difference scope is about 6° C.˜12° C.; when the difference value is not in the predetermined difference scope, adjusting the predetermined spraying manner; when the difference value is in the predetermined difference scope, implementing the above spraying steps to the crucible.
摘要:
The invention provides an optical device and manufacture thereof. The optical device of the invention includes a transparent substrate, a seeding layer, a plurality of nano-rods and a protection layer. The seeding layer is formed to overlay an entrance surface and an exit surface of the transparent substrate. The plurality of nano-rods are formed on the seeding layer. The protection layer is formed to completely overlay the plurality of nano-rods.
摘要:
A polycrystalline silicon wafer is provided. The polycrystalline silicon wafer, includes a plurality of silicon grains, wherein the carbon content of the polycrystalline silicon wafer is greater than 4 ppma, and the resistivity of the polycrystalline silicon wafer is greater than or equal to 1.55 Ω-cm.
摘要:
A crystalline silicon ingot and a method of fabricating the same are provided. The method utilizes a nucleation promotion layer to facilitate a plurality of silicon grains to nucleate on the nucleation promotion layer from a silicon melt and grow in a vertical direction into silicon grains until the silicon melt is completely solidified. The increment rate of defect density in the silicon ingot along the vertical direction has a range of 0.01%/mm˜10%/mm.
摘要:
The instant disclosure relates to a wafer formed by slicing an ingot. The wafer has at least one side surface adjacent to the slicing path and topped with a nanostructure layer.
摘要:
A crystalline silicon ingot and a method of fabricating the same are disclosed. The crystalline silicon ingot of the invention includes multiple silicon crystal grains growing in a vertical direction of the crystalline silicon ingot. The crystalline silicon ingot has a bottom with a silicon crystal grain having a first average crystal grain size of less than about 12 mm. The crystalline silicon ingot has an upper portion, which is about 250 mm away from said bottom, with a silicon crystal grain having a second average crystal grain size of greater than about 14 mm.
摘要:
A method for manufacturing a wafer includes forming a plurality nano-pillars on a surface of a brick; forming a cover layer on the surfaces of the brick, wherein the cover layer covers the nano-pillars; forming an adhesive layer on the surface of the cover layer; cutting the brick into a plurality of wafers; and removing the cover layer and the adhesive layer on the wafers by a solvent, wherein the solvent reacts with the cover layer but not reacts with the brick.
摘要:
The invention provides an epitaxial substrate and fabrication thereof. The epitaxial substrate according to the invention includes a crystalline substrate. In particular, the crystalline substrate has an epitaxial surface which is nano-rugged and non-patterned. The epitaxial substrate according to the invention thereon benefits a compound semiconductor material in growth of epitaxy films with excellent quality. Moreover, the fabrication of the epitaxial substrate according to the invention has advantages of low cost and rapid production.