摘要:
This invention provides an optical transmitter module and an optical module using an EA modulator capable of realizing stable ACER regardless of operating temperature without using a control mechanism for maintaining temperature of the EA modulator constant. In the EA modulator, optical waveguides formed of a multi-layered film are formed on a substrate, an electrical signal is applied to the optical waveguides in a direction vertical to the substrate, and the input light absorption amount is changed to control the amount of output light. Also, a plurality of p-side electrodes electrically separated from each other for applying an electrical signal to the active layer optical waveguides are arranged on optical axes of active layer optical waveguides. The length of optical waveguides to which the electrical signal is applied is changed by controlling the number of p-side electrodes to which the electrical signal is applied in accordance with temperature.
摘要:
For achieving a transmission light source having different transmission properties or characteristics, i.e., the a parameters, depending upon application thereof, in a light emission element of semiconductor EA modulator integrated type being constructed with a light emission portion for lasing with a single vertical mode and a plurality of EA modulators, wherein an absorption edge wavelength under the condition of applying no bias thereto, in the semiconductor multiple-quantum-well structure owned by the modulator which is near to an emission side of the light emission portion, is to be equal or longer than the absorption edge wavelength owned by the modulator positioned far from the emission side of the light emission portion.
摘要:
A fabrication process for a semiconductor device including a plurality of semiconductor layers, the plurality of semiconductor layers including at least a nitrogen-containing alloy semiconductor AlaGabIn1-a-bNxPyAszSb1-x-y-z (0≦a≦1, 0≦b≦1, 0
摘要翻译:一种包括多个半导体层的半导体器件的制造工艺,所述多个半导体层至少包括含氮合金半导体AlaGabIn1-a-bNxPyAszSb1-xyz(0≤a≤1,0<= b < 1,0
摘要:
Disclosed is a vertical cavity surface emitting laser providing mirrors at least one of which has a high reflectivity to be obtained with a small number of pairs each comprising a semiconductor low-refractivity layer and a semiconductor high-refractivity layer, (1) in which GaAs is used for a substrate and Al, In and P are used as main elements for making the low-refractivity layers lattice-matching the GaAs substrate; (2) in which Ga, In, N and As are used as main elements of the high-refractivity layers; (3) in which GaAs is used for a substrate, Ga, In, N and As are used as main elements for making an active layer and the mirrors lattice-match the GaAs substrate.
摘要:
A waveguide device includes an indium phosphide substrate, an active layer formed on the indium phosphide substrate, and a cladding layer formed on the active layer, the cladding layer having a ridge structure the side wall of which is configured into a reversed mesa form.
摘要:
A semiconductor optical device in which an optical waveguide (3, 11) provided on a semiconductor substrate (1) comprises a strained-layer superlattice shows an extremely small transmission loss. A semiconductor optical device with further improved characteristics is obtainable by using a stained-layer superlattice for a portion required to show a great change in refractive index, such as an optical crosspoint switch portion (10), as well as for the optical waveguide (3, 11). The strained-layer superlattice comprises a first semiconductor layer and a second semiconductor layer having a narrower band gap and a greater lattice constant as compared with the first semiconductor layer, the two layers grown periodically.
摘要:
A semiconductor optical switch and an optical switch array for use in an optical logic circuit, photonic switching, OEIC, etc., wherein a light amplifying means is provided on a bypass waveguide that connects a plurality of optical waveguides, thereby enabling improvement of the light crosstalk and the light propagation loss. In particular, according to the arrangement of the present invention that a light amplifying means is provided in addition to the deflecting portion, no noise component is amplified and therefore the SN ratio is markedly increased.
摘要:
A semiconductor laser device of the field modulation type includes a structure in which the threshold carrier density for laser oscillation is reduced so as to enable an effective action of a modulated electric field applied externally on an active region for radiating light, thereby enabling an extremely high speed modulation. A quantum structure which does not fulfill the charge neutrality condition for free-carriers or a strained super lattice structure is adopted as the structure in which the threshold carrier density is reduced.
摘要:
In a well-known semiconductor laser, a multiple quantum well type active layer consisting of barrier layers and active layers or well layers, each of which has a thickness less than the de Broglie wavelength of electrons, is doped with an impurity, and the impurity density is made higher in the barrier layer than in the well layer. Further, in a case where the multiple quantum well active layer is held between p-type and n-type cladding layers, the well layer is undoped, the part of the barrier layer lying in contact with the well layer is undoped, and the other part of the barrier layer close to the p-type cladding layer is put into the n-conductivity type while that of the barrier layer close to the n-type cladding layer is put into the n-conductivity type. Desirably, the impurity density should range from about 1.times.10.sup.18 to about 1.times.10.sup.19 cm.sup.- 3.
摘要:
A semiconductor device comprises a first superlattice layer consisting of a first semiconductor layer that contains impurities and a second semiconductor layer that contains impurities at a low concentration, said first superlattice layer being formed on a semiconductor substrate; and a second superlattice layer that covers that exposed side walls of said first superlattice layer. A disordered region is formed in the vicinity of the first semiconductor layer of the second superlattice layer in order to realize quantum wires with the conventional manufacturing process. This makes it possible to easily fabricate a laser device, a light-emitting diode and a transistor having quantum wires to enhance their performance.