摘要:
The present disclosure relates to an electromagnetic energy detector. The detector can include a substrate having a first refractive index; a metal layer; an absorber layer having a second refractive index and disposed between the substrate and the metal layer; a coupling structure to convert incident radiation to a surface plasma wave; additional conducting layers to provide for electrical contact to the electromagnetic energy detector, each conducting layer characterized by a conductivity and a refractive index; and a surface plasma wave (“SPW”) mode-confining layer having a third refractive index that is higher than the second refractive index disposed between the substrate and the metal layer.
摘要:
Exemplary embodiments provide semiconductor nanowires and nanowire devices/applications and methods for their formation. In embodiments, in-plane nanowires can be epitaxially grown on a patterned substrate, which are more favorable than vertical ones for device processing and three-dimensional (3D) integrated circuits. In embodiments, the in-plane nanowire can be formed by selective epitaxy utilizing lateral overgrowth and faceting of an epilayer initially grown in a one-dimensional (1D) nanoscale opening. In embodiments, optical, electrical, and thermal connections can be established and controlled between the nanowire, the substrate, and additional electrical or optical components for better device and system performance.
摘要:
Exemplary embodiments provide semiconductor nanowires and nanowire devices/applications and methods for their formation. In embodiments, in-plane nanowires can be epitaxially grown on a patterned substrate, which are more favorable than vertical ones for device processing and three-dimensional (3D) integrated circuits. In embodiments, the in-plane nanowire can be formed by selective epitaxy utilizing lateral overgrowth and faceting of an epilayer initially grown in a one-dimensional (1D) nanoscale opening. In embodiments, optical, electrical, and thermal connections can be established and controlled between the nanowire, the substrate, and additional electrical or optical components for better device and system performance.
摘要:
A process for formation of a hetero junction structured film utilizing V grooves is disclosed. A monocrystalline film 1 is etched into V grooves, and thereupon, a hetero film 2 having misfits is grown, so that dislocations would be intensively distributed within the V grooves. Then, an oxide layer 3 is formed thereupon, and then, the portions of the oxide layer 3 and the hereto film 2 corresponding to the V grooves are removed by carrying out an etching. Then, the residue oxide layer is removed, thereby forming a non-stress non-dislocation hetero junction structure. Further, the following steps can be added. That is, on the above structure, a thin oxide layer 3 is deposited by carrying out a thermal oxidation or a chemical deposition, and then, a polycrystalline silicon film 4 is deposited. Then the surface irregularities are smoothened by carrying out a selective grinding. Or the following steps may be added. That is, the V groove portions of the hetero film 2 and the monocrystalline film 1 are filled with a monocrystalline film, and the residue oxide layer 3 is removed. Thus a hetero junction film can be grown in which the stress effect is minimized, and the dislocation concentration is made to be extremely low.
摘要:
The present disclosure relates to an electromagnetic energy detector. The detector can include a substrate having a first refractive index; a metal layer; an absorber layer having a second refractive index and disposed between the substrate and the metal layer; a coupling structure to convert incident radiation to a surface plasma wave; additional conducting layers to provide for electrical contact to the electromagnetic energy detector, each conducting layer characterized by a conductivity and a refractive index; and a surface plasma wave (“SPW”) mode-confining layer having a third refractive index that is higher than the second refractive index disposed between the substrate and the metal layer.
摘要:
Exemplary embodiments provide materials and methods of forming high-quality semiconductor devices using lattice-mismatched materials. In one embodiment, a composite film including one or more substantially-single-particle-thick nanoparticle layers can be deposited over a substrate as a nanoscale selective growth mask for epitaxially growing lattice-mismatched materials over the substrate.
摘要:
A method of epitaxially growing nitrogen-based compound semiconductor thin films on a semiconductor substrate, which is periodically patterned with grooves. The method can provide an epitaxial growth of a first crystalline phase epitaxial film on the substrate, and block the growth of an initial crystalline phase with barrier materials prepared at the sides of the grooves. Semiconductor devices employing the epitaxial films are also disclosed.
摘要:
A method and structure for a semiconductor transistor, including various embodiments. In embodiments, a transistor channel can be formed between a semiconductor source and a semiconductor drain, wherein a transistor gate oxide completely surrounds the transistor channel and a transistor gate metal that completely surrounds the transistor gate oxide. Related fabrication processes are presented for similar device embodiments based on a Group III-V semiconductor material and silicon-on-insulator materials.
摘要:
Exemplary embodiments provide materials and methods of forming high-quality semiconductor devices using lattice-mismatched materials. In one embodiment, a composite film including one or more substantially-single-particle-thick nanoparticle layers can be deposited over a substrate as a nanoscale selective growth mask for epitaxially growing lattice-mismatched materials over the substrate.
摘要:
A plasmonic detector is described which can resonantly enhance the performance of infrared detectors. More specifically, the disclosure is directed to enhancing the quantum efficiency of semiconductor infrared detectors by increasing coupling to the incident radiation field as a result of resonant coupling to surface plasma waves supported by the metal/semiconductor interface, without impacting the dark current of the device, resulting in an improved detectivity over the surface plasma wave spectral bandwidth.