Abstract:
According to embodiments of the present invention, a non-volatile memory device is provided. The non-volatile memory device includes a nanowire transistor including a nanowire channel, and a resistive memory cell arranged adjacent to the nanowire transistor and in alignment with a longitudinal axis of the nanowire channel. According to further embodiments of the present invention, a method of forming a non-volatile memory device is also provided.
Abstract:
A through silicon interposer wafer and method of manufacturing the same. A through silicon interposer wafer having at least one cavity formed therein for MEMS applications and a method of manufacturing the same are provided. The through silicon interposer wafer includes one or more filled silicon vias formed sufficiently proximate to the at least one cavity to provide support for walls of the at least one cavity during subsequent processing of the interposer wafer.
Abstract:
A method for thin film encapsulation (TFE) of a microelectromechanical system (MEMS) device, including providing a substrate; forming a MEMS device on the substrate; forming one or more etching channels adjacent to the MEMS device; providing one or more cavities below the MEMS device; and forming one or more cavities above the MEMS device.
Abstract:
An electromechanical device and method of fabrication thereof comprising: providing a first wafer with a circuit arrangement on a first surface thereof and a first electrode on a second surface thereof; forming first and second via structures from the first surface to the second surface of the first wafer, said first via electrically connecting the first electrode with the circuit arrangement; providing a second wafer with a suspended structure on a first surface thereof; forming a second electrode on the suspended structure; forming an interconnect structure on the first surface of the second wafer that electrically connects with the second electrode; bonding the first wafer to the second wafer with the second surface of the first wafer facing the first surface of the second wafer, with the second via structure electrically connecting the circuit arrangement to the interconnect structure, and the first and second electrodes forming a capacitive structure.
Abstract:
A method for thin film encapsulation (TFE) of a microelectromechanical system (MEMS) device, including providing a substrate; forming a MEMS device on the substrate; forming one or more etching channels adjacent to the MEMS device; providing one or more cavities below the MEMS device; and forming one or more cavities above the MEMS device.
Abstract:
A method of fabricating encapsulated microelectromechanical system (MEMS) devices, comprising: providing a substrate having one or more MEMS devices formed thereon; depositing a sacrificial layer over the substrate and the one or more MEMS devices; patterning the sacrificial layer to define one or more cavities in the sacrificial layer and around the one or more MEMS devices; forming a cap layer over the sacrificial layer and the one or more cavities, the cap layer having one or more etch holes defined therein; removing the sacrificial layer by etching the sacrificial layer at least through the one or more etch holes; and depositing a sealing layer over the cap layer and the one or more etch holes to encapsulate the one or more MEMS devices, the substrate, and the cap layer.
Abstract:
According to embodiments of the present invention, a resistive memory arrangement is provided. The resistive memory arrangement includes a nanowire, and a resistive memory cell including a resistive layer including a resistive changing material, wherein at least a section of the resistive layer is arranged covering at least a portion of a surface of the nanowire, and a conductive layer arranged on at least a part of the resistive layer. According to further embodiments of the present invention, a method of forming a resistive memory arrangement is also provided.
Abstract:
Various embodiments may provide a device arrangement. The device arrangement may include a substrate including a conductive layer. The device arrangement may further include a microelectromechanical systems (MEMS) device monolithically integrated with the substrate, wherein the MEMS device may be electrically coupled to the conductive layer. A cavity may be defined through the conductive layer for acoustically isolating the MEMS device MEMS device from the substrate. At least one anchor structure may be defined by the conductive layer to support the MEMS device.
Abstract:
An electromechanical device and method of fabrication thereof comprising: providing a first wafer with a circuit arrangement on a first surface thereof and a first electrode on a second surface thereof; forming first and second via structures from the first surface to the second surface of the first wafer, said first via electrically connecting the first electrode with the circuit arrangement; providing a second wafer with a suspended structure on a first surface thereof; forming a second electrode on the suspended structure; forming an interconnect structure on the first surface of the second wafer that electrically connects with the second electrode; bonding the first wafer to the second wafer with the second surface of the first wafer facing the first surface of the second wafer, with the second via structure electrically connecting the circuit arrangement to the interconnect structure, and the first and second electrodes forming a capacitive structure.