摘要:
A method of handling an IC wafer that includes a multiplicity of dice is described. Solder bumps are formed on bond pads on the active surface of the wafer. The back surface of the bumped wafer is adhered to a first mount tape. The wafer is singulated while it is still secured to the first tape to provide a multiplicity of individual dice. The active surfaces of the singulated dice are then adhered to a second tape with the first tape still adhered to the back surfaces of the dice. The first tape may then be removed. In this manner, the back surfaces of the dice may be left exposed and facing upwards with the active surfaces of the dice adhered to the second tape. The described method permits the use of a conventional die attach machine that is not designated for use as a flip-chip die attach machine.
摘要:
A method is described for packaging integrated circuit dice such that each package includes a die with an integrated passive component mounted to the active surface of the die.
摘要:
A method of handling an IC wafer that includes a multiplicity of dice is described. Solder bumps are formed on bond pads on the active surface of the wafer. The back surface of the bumped wafer is adhered to a first mount tape. The wafer is singulated while it is still secured to the first tape to provide a multiplicity of individual dice. The active surfaces of the singulated dice are then adhered to a second tape with the first tape still adhered to the back surfaces of the dice. The first tape may then be removed. In this manner, the back surfaces of the dice may be left exposed and facing upwards with the active surfaces of the dice adhered to the second tape. The described method permits the use of a conventional die attach machine that is not designated for use as a flip-chip die attach machine.
摘要:
A variety of improved shell case style packages as well as shell case style wafer level packaging processes are described. Generally, in shell case style packaging, traces are patterned on the top surface of a wafer. In some embodiments, the conductors formed along the sides of the package are formed from at least a couple conductor layers to improve the adhesion of the conductors to the traces formed on the top surface of the devices. In some embodiments the conductors are patterned during processing such that the conductors are not cut during the wafer dicing operation. This arrangement is particularly useful when the conductors are formed at least partially from aluminum (or other metals that oxidize in ambient air). In other embodiments, BCB is not used under the trace layer in regions that will have notches formed therein so that the resulting package does not have any exposed BCB/trace junctions. In some embodiments, no BCB layer whatsoever is applied during packaging. In other embodiments, BCB is used, but the BCB layer is patterned to avoid dice line areas that will later be trenched or notched.
摘要:
In one aspect of the present invention, an integrated circuit package will be described. The integrated circuit package includes at least two integrated circuits that are attached with a substrate. The integrated circuits and the substrates are at least partially encapsulated in a molding material. There is a groove or air gap that extends partially through the molding material and that is arranged to form a thermal barrier between the integrated circuits.
摘要:
A variety of improved approaches for packaging integrated circuits are described. In one described approach, a multiplicity of die cavities are formed in a plastic carrier. In some preferred embodiments, the die cavities are formed by laser ablation. A multiplicity of dice are placed on the carrier, with each die being placed in an associated die cavity. Each of the dice preferably has a multiplicity of I/O bumps formed thereon. An encapsulant is applied over the carrier to form an encapsulant layer that covers the dice and fills portions of the cavities that are not occupied by the dice. In some preferred embodiments, the encapsulant is an epoxy material applied by screen printing and the dice are not physically attached to the carrier prior to the application of the encapsulant. In these embodiments, the epoxy encapsulant serves to secure the dice to the carrier.
摘要:
The present inventions relate to methods and arrangements for using a thin foil to form electrical interconnects in an integrated circuit package. One embodiment of the present invention involves attaching multiple dice to a foil carrier structure. The foil carrier structure is made of a thin foil that is bonded to a carrier. The dice and at least a portion of the metallic foil is then encapsulated with a molding material. The carrier is removed, leaving behind a molded foil structure. The exposed foil is patterned and etched using photolithographic techniques to define multiple device areas in the foil. Each device area includes multiple conductive lines. Afterwards, portions of the conductive lines are covered with a dielectric material and other portions are left exposed to define multiple bond pads in the device area. The molded foil structure can be singulated to form multiple integrated circuit packages.
摘要:
Particular embodiments of the present invention provide a leadframe suitable for use in packaging IC dice that enables stress reduction in and around the die, die attach material, die attach pad and mold interfaces. More particularly, various leadframes are described that include recesses in selected regions of the top surface of the die attach pad.
摘要:
Apparatuses and methods for inkjet printing electrical interconnect patterns such as leadframes for integrated circuit devices are disclosed. An apparatus for packaging includes a thin substrate adapted for high temperature processing, and an attach pad and contact regions that are inkjet printed to the thin substrate using a metallic nanoink. The nanoink is then cured to remove liquid content. The residual metallic leadframe or electrical interconnect pattern has a substantially consistent thickness of about 10 to 50 microns or less. An associated panel assembly includes a conductive substrate panel having multiple separate device arrays comprising numerous electrical interconnect patterns each, a plurality of integrated circuit devices mounted on the conductive substrate panel, and a molded cap that encapsulates the integrated circuit devices and associated electrical interconnect patterns. The molded cap is of substantially uniform thickness over each separate device array, and extends into the space between separate device arrays.
摘要:
Apparatuses and methods for inkjet printing electrical interconnect patterns such as leadframes for integrated circuit devices are disclosed. An apparatus for packaging includes a thin substrate adapted for high temperature processing, and an attach pad and contact regions that are inkjet printed to the thin substrate using a metallic nanoink. The nanoink is then cured to remove liquid content. The residual metallic leadframe or electrical interconnect pattern has a substantially consistent thickness of about 10 to 50 microns or less. An associated panel assembly includes a conductive substrate panel having multiple separate device arrays comprising numerous electrical interconnect patterns each, a plurality of integrated circuit devices mounted on the conductive substrate panel, and a molded cap that encapsulates the integrated circuit devices and associated electrical interconnect patterns. The molded cap is of substantially uniform thickness over each separate device array, and extends into the space between separate device arrays.