Abstract:
Embodiments described herein provide for a method of forming an etch selective hardmask. An amorphous carbon hardmask is implanted with various dopants to increase the hardness and density of the hardmask. The ion implantation of the amorphous carbon hardmask also maintains or reduces the internal stress of the hardmask. The etch selective hardmask generally provides for improved patterning in advanced NAND and DRAM devices.
Abstract:
Ion species are supplied to a workpiece comprising a pattern layer over a substrate. A material layer is deposited on the pattern layer using an implantation process of the ion species. In one embodiment, the deposited material layer has an etch selectivity to the pattern layer. In one embodiment, a trench is formed on the pattern layer. The trench comprises a bottom and a sidewall. The material layer is deposited into the trench using the ion implantation process. The material layer is deposited on the bottom of the trench in a direction along the sidewall.
Abstract:
A nanocrystalline diamond layer for use in forming a semiconductor device and methods for using the same are disclosed herein. The device can include a substrate with a processing surface and a supporting surface, a device layer formed on the processing surface and a nanocrystalline diamond layer formed on the processing layer, the nanocrystalline diamond layer having an average grain size of between 2 nm and 5 nm. The method can include positioning a substrate in a process chamber, depositing a device layer on a processing surface, depositing a nanocrystalline diamond layer on the device layer, the nanocrystalline diamond layer having an average grain size of between 2 nm and 5 nm, patterning and etching the nanocrystalline diamond layer, etching the device layer to form a feature and ashing the nanocrystalline diamond layer from the surface of the device layer.
Abstract:
A nanocrystalline diamond layer for use in forming a semiconductor device and methods for using the same are disclosed herein. The device can include a substrate with a processing surface and a supporting surface, a device layer formed on the processing surface and a nanocrystalline diamond layer formed on the processing layer, the nanocrystalline diamond layer having an average grain size of between 2 nm and 5 nm. The method can include positioning a substrate in a process chamber, depositing a device layer on a processing surface, depositing a nanocrystalline diamond layer on the device layer, the nanocrystalline diamond layer having an average grain size of between 2 nm and 5 nm, patterning and etching the nanocrystalline diamond layer, etching the device layer to form a feature and ashing the nanocrystalline diamond layer from the surface of the device layer.
Abstract:
A method of anisotropically dry-etching exposed substrate material on a patterned substrate is described. The patterned substrate has a gap formed in a single material made from, for example, a silicon-containing material or a metal-containing material. The method includes directionally ion-implanting the patterned structure to implant the bottom of the gap without implanting substantially the walls of the gap. Subsequently, a remote plasma is formed using a fluorine-containing precursor to etch the patterned substrate such that either (1) the walls are selectively etched relative to the floor of the gap, or (2) the floor is selectively etched relative to the walls of the gap. Without ion implantation, the etch operation would be isotropic owing to the remote nature of the plasma excitation during the etch process.
Abstract:
Species are supplied to a flowable layer over a substrate. A property of the flowable layer is modified by implanting the species to the flowable layer. The property comprises a density, a stress, a film shrinkage, an etch selectivity, or any combination thereof.
Abstract:
Embodiments described herein relate to methods for forming flowable chemical vapor deposition (FCVD) films suitable for high aspect ratio gap fill applications. Various process flows described include ion implantation processes utilized to treat a deposited FCVD film to improve dielectric film density and material composition. Ion implantation processes, curing processes, and annealing processes may be utilized in various sequence combinations to form dielectric films having improved densities at temperatures within the thermal budget of device materials. Improved film quality characteristics include reduced film stress and reduced film shrinkage when compared to conventional FCVD film formation processes.
Abstract:
Methods for forming air gaps in an interconnection structure with desired materials formed on different locations of the interconnection structure using an ion implantation process to define an etching boundary followed by an etching process for semiconductor devices are provided. In one embodiment, a method for forming air gaps in an interconnection structure on a substrate, the method includes implanting ions in a first region of an insulating material disposed on a substrate, leaving a second region without implanted ions, the second region having a first surface interfaced with the first region and a second surface interfaced with the substrate, and performing an etching process to selectively etch the second region away from the substrate, forming an air gap between the first region and the substrate.
Abstract:
Plasma process chambers employing distribution grids having focusing surfaces thereon enabling angled fluxes to reach a substrate, and associated methods are disclosed. A distribution grid is disposed in a chamber between the plasma and a substrate. The distribution grid includes a first surface facing the substrate and a focusing surface facing the plasma. A passageway extends through the distribution grid, and is sized with a width to prevent the plasma sheath from entering therein. By positioning the focusing surface at an angle other than parallel to the substrate, an ion flux from the plasma may be accelerated across the plasma sheath and particles of the flux pass through the passageway to be incident upon the substrate. In this manner, the angled ion flux may perform thin film deposition and etch processes on sidewalls of features extending orthogonally from or into the substrate, as well as angled implant and surface modification.
Abstract:
A method of anisotropically dry-etching exposed substrate material on a patterned substrate is described. The patterned substrate has a gap formed in a single material made from, for example, a silicon-containing material or a metal-containing material. The method includes directionally ion-implanting the patterned structure to implant the bottom of the gap without implanting substantially the walls of the gap. Subsequently, a remote plasma is formed using a fluorine-containing precursor to etch the patterned substrate such that either (1) the walls are selectively etched relative to the floor of the gap, or (2) the floor is selectively etched relative to the walls of the gap. Without ion implantation, the etch operation would be isotropic owing to the remote nature of the plasma excitation during the etch process.