摘要:
A motor control device for a vehicle having a deceleration deactivatable engine which includes at least one deactivatable cylinder which is deactivated during a deceleration traveling of the vehicle, and which is started by a motor when the operation thereof transitions from a deceleration deactivation operation to a normal operation. The motor control device comprises a cylinder deactivation state determining section (S202) for determining whether or not the engine is in a cylinder deactivation state, a cylinder deactivation executing section, a cylinder deactivation operation detecting section (S201) for detecting whether or not the cylinder deactivation executing section is activated, and a starting torque setting section (S201-S204) for setting staring torque for starting the engine by the motor. When it is determined, by the cylinder deactivation state determining section, that the engine is in a cylinder deactivation state, and it is determined, by the cylinder deactivation operation detecting section, that the engine is to return to the fuel supply operation, the starting torque setting section sets a smaller staring torque than in the case of a normal operation. Accordingly, the output of the motor is optimally set when the operation transitions from the cylinder deactivation operation to the normal operation; thus, a smooth drivability and an improved fuel consumption efficiency can be obtained.
摘要:
A control system and method for accelerating the warm-up operation of a hybrid vehicle while preferably using the characteristics of the hybrid vehicle. The system comprises a warm-up accelerating section for accelerating warm-up of the engine by controlling the ignition timing of the engine according to a temperature of water for cooling the engine; and a power generation control section for performing power generation using the motor according to a remaining charge of a battery of the vehicle. The warm-up accelerating section has an ignition timing correcting section for correcting the ignition timing according to an amount of generated power which is controlled by the power generation control section. Therefore, in comparison with the case of performing the warm-up operation by simply using both the ignition timing retardation and the power generation, the ignition timing can be close to the optimum point, thereby improving the combustion efficiency.
摘要:
A motor control device for a vehicle having a deceleration deactivatable engine which includes at least one deactivatable cylinder which is deactivated during a deceleration traveling of the vehicle, and which is started by a motor when the operation thereof transitions from a deceleration deactivation operation to a normal operation. The motor control device comprises a cylinder deactivation state determining section (S202) for determining whether or not the engine is in a cylinder deactivation state, a cylinder deactivation executing section, a cylinder deactivation operation detecting section (S201) for detecting whether or not the cylinder deactivation executing section is activated, and a starting torque setting section (S201-S204) for setting staring torque for starting the engine by the motor. When it is determined, by the cylinder deactivation state determining section, that the engine is in a cylinder deactivation state, and it is determined, by the cylinder deactivation operation detecting section, that the engine is to return to the fuel supply operation, the starting torque setting section sets a smaller staring torque than in the case of a normal operation. Accordingly, the output of the motor is optimally set when the operation transitions from the cylinder deactivation operation to the normal operation; thus, a smooth drivability and an improved fuel consumption efficiency can be obtained.
摘要:
A failure detection device for a vehicle having a deceleration deactivatable engine, by which failure detection, performed primarily by monitoring the oil pressure of operation oil, is ensured. The failure detection device is provided for a vehicle having a deceleration deactivatable engine in which it is possible to deactivate at least one cylinder by closing both of intake and exhaust valves thereof by applying the oil pressure of operation oil to a passage for deactivation execution via an actuator, and also it is possible to cancel the closed state of both of the intake and exhaust valves by applying the oil pressure of the operation oil to a passage for deactivation cancellation. The failure detection device includes an oil pressure condition judgement section (steps S204 and S212) which determines whether the oil pressure of the operation oil measured by a POIL sensor satisfies threshold conditions, and an abnormality judgement section (steps S207 and S215) which determines that abnormality exists when it is determined, by the oil pressure condition judgement section, that the oil pressure of the operation oil does not satisfy the threshold conditions.
摘要:
A control apparatus for a hybrid vehicle for generating an appropriate amount of regeneration energy during deceleration. A control apparatus for a hybrid vehicle including an engine and electric motor for driving the hybrid vehicle wherein the engine comprises cylinders capable of deactivated operations and the motor executes regenerative braking when the vehicle is decelerating. The control apparatus of the present invention includes a cylinder deactivation determination device for determining whether or not the vehicle speed is appropriate for executing the cylinder deactivated operation, a regeneration amount calculating device for detecting whether the vehicle state is appropriate for regeneration and calculates the amount of regeneration; and further includes a compensation amount calculating device that compensates the amount of regeneration based on an all cylinder deactivated operation and the engine rotation speed.
摘要:
A failure detection device for a vehicle having a deceleration deactivatable engine, by which failure detection, performed primarily by monitoring the oil pressure of operation oil, is ensured. The failure detection device is provided for a vehicle having a deceleration deactivatable engine in which it is possible to deactivate at least one cylinder by closing both of intake and exhaust valves thereof by applying the oil pressure of operation oil to a passage for deactivation execution via an actuator, and also it is possible to cancel the closed state of both of the intake and exhaust valves by applying the oil pressure of the operation oil to a passage for deactivation cancellation. The failure detection device includes an oil pressure condition judgement section (steps S204 and S212) which determines whether the oil pressure of the operation oil measured by a POIL sensor satisfies threshold conditions, and an abnormality judgement section (steps S207 and S215) which determines that abnormality exists when it is determined, by the oil pressure condition judgement section, that the oil pressure of the operation oil does not satisfy the threshold conditions.
摘要:
A failure determination system and method for an internal combustion engine and an engine control unit are provided which are capable of properly determining a failure of a variable valve mechanism for inactivating a valve system associated with at least one of cylinders during a predetermined operation of the engine, by discriminating a misfire caused by the failure of the mechanism from a normal misfire. Fuel injection valves inject fuel for each cylinder and oxygen concentration of exhaust gases is detected. A misfire condition is detected on a cylinder-by-cylinder basis. Fuel injection to a misfiring cylinder is stopped. A failure of the mechanism is determined, when a parameter based on the oxygen concentration detection indicates a richer value of an actual air-fuel ratio of the exhaust gases than a predetermined reference value does, under a condition of the fuel injection being stopped.
摘要:
A control apparatus for a hybrid vehicle which includes an all cylinder deactivated operation execution flag F_ALCS for executing the all cylinders deactivated operation, when it is determined that the all cylinders deactivated operation is appropriate by the all cylinders deactivation standby flag F_ALCSSTB for determining the appropriateness of the all cylinders deactivated operation and the all cylinders deactivation release conditions realization flag F_F_ALCSSTP for determining the appropriateness of releasing the all cylinders deactivated operation, based on the all cylinders deactivation solenoid flag F_ALCSSOL for operating a spool valve, for determining an appropriateness of the operation of the solenoid valve, the all cylinder deactivation standby flag F_ALCSSTB, the all cylinder deactivation conditions realization flag F_ALCSSTP, the all cylinder deactivation solenoid flag F_ALCSSOL.
摘要:
Conditions for permitting operation of vibration control are that; a stored charge of a battery 17 for an electric motor detected by storage state monitoring devices 15 and 24 is larger than a predetermined storage charge threshold, a vehicle's engine is idling, engine speed is within a prescribed range, and engine load is within a prescribed range. When all these conditions are satisfied, vibration damping control by a vibration damping control device is performed.
摘要:
A control device for a hybrid vehicle includes an actual intake gas negative pressure detection unit which detects an intake air negative pressure for the engine, an estimated intake gas negative pressure calculation unit which estimates an intake air negative pressure based on a revolution number of the engine and an opening degree of a throttle, and an engine control unit which compares an actual intake gas negative pressure obtained by the actual intake gas negative pressure detection unit with an estimated intake gas negative pressure obtained by the estimated intake gas negative pressure calculation unit. The engine control unit prohibits a fuel supply to the engine until the actual intake gas negative pressure matches the estimated intake gas negative pressure, and carries out the fuel supply to the engine when the actual intake gas negative pressure matches the estimated intake gas negative pressure.