摘要:
Method and apparatus for processing a substrate with an energetic particle beam. Features on the substrate are oriented relative to the energetic particle beam and the substrate is scanned through the energetic particle beam. The substrate is periodically indexed about its azimuthal axis of symmetry, while shielded from exposure to the energetic particle beam, to reorient the features relative to the major dimension of the beam.
摘要:
Method and apparatus for processing a substrate with an energetic particle beam. Features on the substrate are oriented relative to the energetic particle beam and the substrate is scanned through the energetic particle beam. The substrate is periodically indexed about its azimuthal axis of symmetry, while shielded from exposure to the energetic particle beam, to reorient the features relative to the major dimension of the beam.
摘要:
Method and apparatus for processing a substrate with an energetic particle beam. Features on the substrate are oriented relative to the energetic particle beam and the substrate is scanned through the energetic particle beam. The substrate is periodically indexed about its azimuthal axis of symmetry, while shielded from exposure to the energetic particle beam, to reorient the features relative to the major dimension of the beam.
摘要:
Apparatus for cathodic vacuum-arc coating deposition. The apparatus includes a mixing chamber, at least one input duct projecting from a first end wall of the mixing chamber, and an output duct projecting from a second end wall of the mixing chamber. Coupled with each input duct is a plasma source adapted to discharge an ion flow of a coating material into the mixing chamber, which is subsequently directed to the output duct. A first solenoidal coil disposed about a side wall of the mixing chamber creates a first magnetic field inside the mixing chamber for steering the ion flow. A second solenoidal coil is disposed adjacent to the first end wall and aligned substantially coaxially with the output duct. The second solenoidal coil creates a second magnetic field inside the mixing chamber for steering the first ion flow. The electrical currents flow through the first and second solenoidal coils in opposite solenoidal directions.
摘要:
Apparatus for cathodic vacuum-arc coating deposition. The apparatus includes a mixing chamber, at least one input duct projecting from a first end wall of the mixing chamber, and an output duct projecting from a second end wall of the mixing chamber. Coupled with each input duct is a plasma source adapted to discharge an ion flow of a coating material into the mixing chamber, which is subsequently directed to the output duct. A first solenoidal coil disposed about a side wall of the mixing chamber creates a first magnetic field inside the mixing chamber for steering the ion flow. A second solenoidal coil is disposed adjacent to the first end wall and aligned substantially coaxially with the output duct. The second solenoidal coil creates a second magnetic field inside the mixing chamber for steering the first ion flow. The electrical currents flow through the first and second solenoidal coils in opposite solenoidal directions.
摘要:
Described is a linear batch CVD system that includes a deposition chamber, one or more substrate carriers, gas injectors and a heating system. Each substrate carrier is disposed in the deposition chamber and has at least one receptacle configured to receive a substrate. The substrate carriers are configured to hold substrates in a linear configuration. Each gas injector includes a port configured to supply a gas in a uniform distribution across one or more of the substrates. The heating system includes at least one heating element and a heating control module for uniformly controlling a temperature of the substrates. The system is suitable for high volume CVD processing of substrates. The narrow width of the deposition chamber enables a uniform distribution of precursor gases across the substrates along the length of the reaction chamber and permits a greater number of substrates to be processed in comparison to conventional deposition chambers.
摘要:
A substrate processing pallet has a top surface and a plurality of side surfaces. The top surface has at least one recess adapted to receive a substrate. The recess includes a support structure adapted to contact a portion of a substrate seated in the recess and a plurality of apertures each adapted to accommodate a lift pin. Lift pins can extend through the apertures initially to support the substrate and retract to deposit the substrate onto the support structure. A side surface includes a process positioning feature adapted to engage with a feature located in a process chamber to position the pallet. A side surface includes a positioning feature adapted to engage with an end effector alignment feature to position the pallet with respect to the end effector during transport. A side surface includes support features adapted to engage with end effector support features to support the pallet during transport.
摘要:
A deposition system is described. The deposition system includes a deposition source that generates deposition flux comprising neutral atoms and molecules. A shield defining an aperture is positioned in the path of the deposition flux. The shield passes the deposition flux through the aperture and substantially blocks the deposition flux from propagating past the shield everywhere else. A substrate support is positioned adjacent to the shield. A dual-scanning system scans the substrate support relative to the aperture with a first and a second motion.
摘要:
A high throughput ion implantation system that rapidly and efficiently processes large quantities of flat panel displays. The ion implantation system has an ion source, an electrode assembly, a platform mounting a workpiece, and a ion beam measuring structure. The ion source in conjunction with the electrode assembly forms an ion beam in the shape of a ribbon beam. The ion beam is formed and directed such that a first portion of the ion beam treats the workpiece while a second portion of the ion beam is contemporaneously measured by the beam measuring structure. A controller obtains data from the beam measuring structure on the ion beam's parameters, and then generates control signals to the ion implantation system in response to the data.
摘要:
Described are a system and a method for depositing a thin film on a substrate. In some embodiments, the system includes a substrate transport system to transport a plurality of discrete substrates, such as glass substrates or wafers, along a closed path. The system also includes a metal deposition zone, a selenization zone and a cooling chamber each disposed on the closed path. During transport along the closed path, the metal deposition zone deposits a layer of a composite metal onto the discrete substrates and the selenization zone selenizes the layer of the composite metal. The cooling zone cools the discrete substrates prior to a subsequent pass through the metal deposition zone and the selenization zone.