摘要:
A semiconductor structure is formed as follows. Trenches are formed in a semiconductor region and a shield electrode is formed in each trench. Gate electrodes are formed in a portion of the trenches that form an active region. Each gate electrode is disposed over the shield electrode and is isolated from the shield electrode by an inter-electrode dielectric. An interconnect layer is formed extending over the trenches. The interconnect layer is isolated from the gate electrodes in the active region by a dielectric layer and contacts the shield electrodes in a shield contact region separate from the active region. The interconnect layer contacts mesa surfaces between adjacent trenches in the shield contact region.
摘要:
A semiconductor structure comprises an active region comprising trenches extending into a semiconductor region. Each trench includes a shield electrode and a gate electrode. The semiconductor structure also comprises a shield contact region adjacent to the active region. The shield contact region comprises at least one contact trench extending into the semiconductor region. The shield electrode from at least one of the trenches in the active region extends along a length of the contact trench. The semiconductor structure also comprises an interconnect layer extending over the active region and the shield contact region. In the active region the interconnect layer is isolated from the gate electrode in each trench by a dielectric layer and contacts mesa surfaces of the semiconductor region adjacent to the trenches. In the shield contact region the interconnect layer contacts the shield electrode and the mesa surfaces of the semiconductor region adjacent to the contact trench.
摘要:
A semiconductor structure comprises an active region comprising trenches extending into a semiconductor region. Each trench includes a shield electrode and a gate electrode. The semiconductor structure also comprises a shield contact region adjacent to the active region. The shield contact region comprises at least one contact trench extending into the semiconductor region. The shield electrode from at least one of the trenches in the active region extends along a length of the contact trench. The semiconductor structure also comprises an interconnect layer extending over the active region and the shield contact region. In the active region the interconnect layer is isolated from the gate electrode in each trench by a dielectric layer and contacts mesa surfaces of the semiconductor region adjacent to the trenches. In the shield contact region the interconnect layer contacts the shield electrode and the mesa surfaces of the semiconductor region adjacent to the contact trench.
摘要:
A semiconductor structure is formed as follows. Trenches are formed in a semiconductor region and a shield electrode is formed in each trench. Gate electrodes are formed in a portion of the trenches that form an active region. Each gate electrode is disposed over the shield electrode and is isolated from the shield electrode by an inter-electrode dielectric. An interconnect layer is formed extending over the trenches. The interconnect layer is isolated from the gate electrodes in the active region by a dielectric layer and contacts the shield electrodes in a shield contact region separate from the active region. The interconnect layer contacts mesa surfaces between adjacent trenches in the shield contact region.
摘要:
A field effect transistor includes a gate trench extending into a semiconductor region. The gate trench has a recessed gate electrode disposed therein. A source region in the semiconductor region flanks each side of the gate trench. A conductive material fills an upper portion of the gate trench so as to make electrical contact with the source regions along upper sidewalls of the gate trench. The conductive material is insulated from the recessed gate electrode.
摘要:
A semiconductor structure comprises trenches extending into a semiconductor region. Portions of the semiconductor region extend between adjacent trenches forming mesa regions. A gate electrode is in each trench. Well regions of a first conductivity type extend in the semiconductor region between adjacent trenches. Source regions of a second conductivity type are in the well regions. Heavy body regions of the first conductivity type are in the well regions. The source regions and the heavy body regions are adjacent trench sidewalls, and the heavy body regions extend over the source regions along the trench sidewalls to a top surface of the mesa regions.
摘要:
A method for forming thick oxide at the bottom of a trench formed in a semiconductor substrate includes forming a conformal oxide film by a sub-atmospheric chemical vapor deposition process that fills the trench and covers a top surface of the substrate. The method also includes etching the oxide film off the top surface of the substrate and inside the trench to leave a substantially flat layer of oxide having a target thickness at the bottom of the trench.
摘要:
A field effect transistor includes a body region of a first conductivity type over a semiconductor region of a second conductivity type. A gate trench extends through the body region and terminates within the semiconductor region. At least one conductive shield electrode is disposed in the gate trench. A gate electrode is disposed in the gate trench over but insulated from the at least one conductive shield electrode. A shield dielectric layer insulates the at lease one conductive shield electrode from the semiconductor region. A gate dielectric layer insulates the gate electrode from the body region. The shield dielectric layer is formed such that it flares out and extends directly under the body region.
摘要:
A trenched field effect transistor is provided that includes (a) a semiconductor substrate, (b) a trench extending a predetermined depth into the semiconductor substrate, (c) a pair of doped source junctions, positioned on opposite sides of the trench, (d) a doped heavy body positioned adjacent each source junction on the opposite side of the source junction from the trench, the deepest portion of the heavy body extending less deeply into said semiconductor substrate than the predetermined depth of the trench, and (e) a doped well surrounding the heavy body beneath the heavy body.