摘要:
The integrated semiconductor memory configuration has a semiconductor body in which selection transistors and storage capacitors are integrated. The storage capacitors have a dielectric layer configured between two electrodes. At least the upper electrode is constructed in a layered manner with a platinum layer, that is seated on the dielectric layer, and a thicker, base metal layer lying above the platinum layer.
摘要:
A method for structuring ferroelectric layers on semiconductor substrates retains or regenerates the adherence and breakdown voltage resistance of the ferroelectric layer, which is especially significant for producing storage capacitors in large-scale integrated FeRAM and DRAM memory components. The addition of H2O or O2 results principally in the recovery of the electrostatic breakdown strength of the ferroelectric layer, which is of importance in particular when the ferroelectric serves as a dielectric of a storage capacitor and has to withstand electric fields of 5-10×106 V/m without a significant leakage current.
摘要翻译:用于在半导体衬底上构造铁电层的方法保留或再生强电介质层的粘附和耐击穿电压,这对于在大规模集成的FeRAM和DRAM存储器组件中产生存储电容器尤其重要。 H 2 O或O 2的添加主要导致铁电层的静电击穿强度的恢复,特别是当铁电体用作储能电容器的电介质并且必须承受5-10×10 6的电场时,这尤其重要 > V / m,没有明显的漏电流。
摘要:
The invention provides in a preferred embodiment an electronic component comprising a first conductive layer, a non-conductive layer and a second conductive layer. A hole is etched through the non-conductive layer. A nanotube, which is provided in said hole, links the first conductive layer to the second conductive layer in a conductive manner.
摘要:
An interconnect arrangement and fabrication method are described. The interconnect arrangement includes an electrically conductive mount substrate, a dielectric layer formed on the mount substrate, and an electrically conductive interconnect formed on the dielectric layer. At least a portion of the dielectric layer under the interconnect contains a cavity. To fabricate the interconnect arrangement, a sacrificial layer is formed on the mount substrate and the interconnect layer is formed on the sacrificial layer. The interconnect layer and the sacrificial layer are structured to produce a structured interconnect on the structured sacrificial layer. A porous dielectric layer is formed on a surface of the mount substrate and of the structured interconnect as well as the sacrificial layer. The sacrificial layer is then removed to form the cavity under the interconnect.
摘要:
In one embodiment, a semiconductor device includes a glass substrate, a semiconductor substrate disposed on the glass substrate, and a magnetic sensor disposed within and/or over the semiconductor substrate.
摘要:
An MIM capacitor includes a first capacitor electrode, which is formed in the surface of a first intermediate dielectric, a second intermediate dielectric, which is formed on the first intermediate dielectric and has an opening that exposes the first capacitor electrode, and a first electrically conducting diffusion barrier layer, which is formed on the surface of the exposed first capacitor electrode. On the diffusion barrier layer and on the side walls of the opening there is also formed a capacitor dielectric and a second capacitor electrode on top.
摘要:
In accordance with an embodiment of the present invention, a method of fabricating a semiconductor device includes forming a trench from a top surface of a substrate having a device region. The device region is adjacent to the top surface than an opposite bottom surface. The trench surrounds the sidewalls of the device region. The trench is filled with an adhesive. An adhesive layer is formed over the top surface of the substrate. A carrier is attached with the adhesive layer. The substrate is thinned from the bottom surface to expose at least a portion of the adhesive and a back surface of the device region. The adhesive layer is removed and adhesive is etched to expose a sidewall of the device region.
摘要:
A method for separating a plurality of dies is provided. The method may include: selectively removing one or more portions from a carrier including a plurality of dies, for separating the plurality of dies along the selectively removed one or more portions, wherein the one or more portions are located between the dies; and subsequently forming over a back side of the dies, at least one metallization layer for packaging the dies
摘要:
In one embodiment, a method of forming a semiconductor device includes forming islands by forming deep trenches within scribe lines of a substrate. The islands have a first notch disposed on sidewalls of the islands. A first electrode stack is formed over a top surface of the islands. The back surface of the substrate is thinned to separate the islands. A second electrode stack is formed over a back surface of the islands.
摘要:
According to various embodiments, a method for processing a semiconductor wafer or die is provided including supplying particles to a plasma such that the particles are activated by the plasma and spraying the activated particles on the semiconductor wafer or die to generate a particle layer on the semiconductor wafer or die.