Power storage device, casing sealing structure, and casing manufacturing method

    公开(公告)号:US10818887B2

    公开(公告)日:2020-10-27

    申请号:US16064005

    申请日:2015-12-28

    摘要: The present invention provides a power storage device capable of preventing deterioration of sealability even when a pulling force is applied to a casing and having high safety and excellent durability. The power storage device of the present invention includes a casing having a sealing structure, the casing includes a first member including a first opening and a second member, the first and second members are joined to each other at a first joint portion provided at a peripheral edge of the first opening, the first joint portion includes a first peripheral groove portion and a first reception port provided at one of the first and second members, a first convex edge portion provided at the other thereof, a first claw portion provided on a side surface of the first convex edge portion, and a first adhesive layer, a front end of the first convex edge portion is disposed inside the first peripheral groove portion and is bonded to an inner wall of the first peripheral groove portion by the first adhesive layer, the first claw portion is disposed inside the first reception port, and the first adhesive layer bonds the front end of the first convex edge portion to the inner wall of the first peripheral groove portion in a state where a side surface of the first claw portion opposite to the front end of the first convex edge portion is in contact with an inner wall of the first reception port opposite to a bottom of the first peripheral groove portion.

    CLAMP JIG, STATOR MANUFACTURING DEVICE, AND METHOD FOR MANUFACTURING STATOR

    公开(公告)号:US20190081539A1

    公开(公告)日:2019-03-14

    申请号:US16083569

    申请日:2017-03-17

    摘要: Provided are a clamp jig for inhibiting an increase in the size of clamping equipment, and reducing the load during clamping by clamping after doing preliminary aligning of a segment end part; a stator manufacturing device; and a method for manufacturing a stator. The clamp jig 40 has a pair of clamp bodies 41, extended in a stator core radial direction, for clamping from both sides in the stator core circumferential direction the end part of an electric conductor, which is inserted in the stator core and welded; and a convex part 42 provided extending in the stator core axis direction at the bottom of the clamp body 41, the convex part being inserted between unwelded electric conductors.

    WELDING METHOD AND DEVICE
    9.
    发明申请

    公开(公告)号:US20220072644A1

    公开(公告)日:2022-03-10

    申请号:US17530729

    申请日:2021-11-19

    摘要: A TIG welding device (10) includes a welding robot (11), robot control device (12), welding torch (13), welding control device (14), gas feeder (15), and a height detection device (16). The welding torch (13) is set at a reference position, and the height detection device (16) detects the respective heights of two tip parts (4e). The robot control device (12) drives the welding robot (11) such that a torch electrode (13c) of the welding torch (13) abuts on central part of the higher tip part (4e). When the torch electrode (13c) is moved toward the reference position while power is supplied to the torch electrode (13c), and inert gas flows in the periphery of the torch electrode (13c), arc (AC) is generated in a gap between the tip parts (4e) and the torch electrode (13c). The overall two tip parts (4e) are melted and welded by this arc (AC).

    Stator manufacturing device and stator manufacturing method

    公开(公告)号:US10284057B2

    公开(公告)日:2019-05-07

    申请号:US14408095

    申请日:2013-02-12

    IPC分类号: H02K15/00

    摘要: A highly versatile stator manufacturing device is provided. A stator manufacturing device 7 includes: an engagement portion 8 engageable with a distal end of an extension portion 5 of each of a plurality of conductor segments 4 extending from a plurality of extension positions that differ in a radial direction R in each slot 3 of a stator core 2; a circumferential direction drive portion 9 that drives the engagement portion 8 engaging with the extension portion 5 in a circumferential direction C, to bend the extension portion 5; and a radial direction drive portion 10 that drives the engagement portion 8 in the radial direction R.