Abstract:
Embodiments are generally directed to package stacking using chip to wafer bonding. An embodiment of a device includes a first stacked layer including one or more semiconductor dies, components or both, the first stacked layer further including a first dielectric layer, the first stacked layer being thinned to a first thickness; and a second stacked layer of one or more semiconductor dies, components, or both, the second stacked layer further including a second dielectric layer, the second stacked layer being fabricated on the first stacked layer.
Abstract:
A microelectronic package including a passive microelectronic device disposed within a package body, wherein the package body is the portion of the microelectronic package which provides support and/or rigidity to the microelectronic package. In a flip-chip type microelectronic package, the package body may comprise a microelectronic substrate to which an active microelectronic device is electrically attached. In an embedded device type microelectronic package, the package body may comprise the material in which the active microelectronic device is embedded.
Abstract:
An interconnect adaptor may be fabricated having a substantially planar surface, to which a microelectronic package may be electrically attached, and a non-planar surface with at least one interconnect extending from the interconnect adaptor planar surface to the interconnect adaptor non-planar surface. The interconnect adaptor non-planar surface may be shaped to substantially conform to a shape of a microelectronic substrate to which it may be attached, which eliminates the need to bend or otherwise adapt the microelectronic package to conform to the microelectronic substrate.
Abstract:
Embodiments are generally directed to package stacking using chip to wafer bonding. An embodiment of a device includes a first stacked layer including one or more semiconductor dies, components or both, the first stacked layer further including a first dielectric layer, the first stacked layer being thinned to a first thickness; and a second stacked layer of one or more semiconductor dies, components, or both, the second stacked layer further including a second dielectric layer, the second stacked layer being fabricated on the first stacked layer.
Abstract:
Embodiments of the present disclosure are directed towards a method of assembling an integrated circuit package. In embodiments the method may include providing a wafer having an unpatterned passivation layer to prevent corrosion of metal conductors embedded in the wafer. The method may further include laminating a dielectric material on the passivation layer to form a dielectric layer and selectively removing dielectric material to form voids in the dielectric layer. These voids may reveal portions of the passivation layer disposed over the metal conductors. The method may then involve removing the portions of the passivation layer to reveal the metal conductors. Other embodiments may be described and/or claimed.
Abstract:
An interconnect adaptor may be fabricated having a substantially planar surface, to which a microelectronic package may be electrically attached, and a non-planar surface with at least one interconnect extending from the interconnect adaptor planar surface to the interconnect adaptor non-planar surface. The interconnect adaptor non-planar surface may be shaped to substantially conform to a shape of a microelectronic substrate to which it may be attached, which eliminates the need to bend or otherwise adapt the microelectronic package to conform to the microelectronic substrate.
Abstract:
A microelectronic package including a passive microelectronic device disposed within a package body, wherein the package body is the portion of the microelectronic package which provides support and/or rigidity to the microelectronic package. In a flip-chip type microelectronic package, the package body may comprise a microelectronic substrate to which an active microelectronic device is electrically attached. In an embedded device type microelectronic package, the package body may comprise the material in which the active microelectronic device is embedded.
Abstract:
Embodiments of the present disclosure are directed towards a method of assembling an integrated circuit package. In embodiments the method may include providing a wafer having an unpatterned passivation layer to prevent corrosion of metal conductors embedded in the wafer. The method may further include laminating a dielectric material on the passivation layer to form a dielectric layer and selectively removing dielectric material to form voids in the dielectric layer. These voids may reveal portions of the passivation layer disposed over the metal conductors. The method may then involve removing the portions of the passivation layer to reveal the metal conductors. Other embodiments may be described and/or claimed.
Abstract:
An apparatus is described that includes a redistribution layer and a semiconductor die on the redistribution layer. An electrically conductive layer resides over the semiconductor die. A compound mold resides over the electrically conductive layer.
Abstract:
A microelectronic package including a passive microelectronic device disposed within a package body, wherein the package body is the portion of the microelectronic package which provides support and/or rigidity to the microelectronic package. In a flip-chip type microelectronic package, the package body may comprise a microelectronic substrate to which an active microelectronic device is electrically attached. In an embedded device type microelectronic package, the package body may comprise the material in which the active microelectronic device is embedded.