Abstract:
In one embodiment, a semiconductor device includes a first semiconductor chip and a second semiconductor chip stacked on the first semiconductor chip. The first and second semiconductor chips are electrically connected via first bump connection parts. Stopper projections and bonding projections are provided at least one of the first and second semiconductor chips. The stopper projections are in contact with the other of the first and second semiconductor chips in an unbonded state. The bonding projections are bonded to the first and second semiconductor chips.
Abstract:
According to an embodiment, a semiconductor package includes a semiconductor chip mounted on an interposer board, a encapsulant sealing the semiconductor chip, and a conductive shielding layer covering the encapsulant and at least part of a side surface of the interposer board. The interposer board has plural vias through an insulating substrate. A part of the plural vias has a cutting plane exposing to the side surface of the interposer board and cut in a thickness direction of the interposer board. The cutting plane of the via is electrically connected to the conductive shielding layer.
Abstract:
According to one embodiment, a semiconductor device includes a first semiconductor chip having a first main surface and a second main surface which opposes the first main surface and on which a first electrode is mounted, a second semiconductor chip having a third main surface on which a second electrode connected to the first electrode is provided and a fourth main surface which opposes the third main surface, and a first spacer which is arranged in a region formed between the first and second electrodes and an outer peripheral surface of the first and second semiconductor chips, and ensures a gap between the first semiconductor chip and the second semiconductor chip.
Abstract:
A semiconductor manufacturing apparatus includes: a collet which sucks a semiconductor chip having a main surface on which a bump is formed, and an actuator which transfers the sucked semiconductor chip onto a mounting substrate or another semiconductor chip by driving the collet. A recessed portion for avoiding a contact between the collet and the bump is formed on a suction surface of the collet which sucks the semiconductor chip.
Abstract:
A semiconductor device includes a wiring substrate, a first semiconductor element, a second semiconductor element, a bump, a bonding portion, and a resin portion. The second semiconductor element is between the wiring substrate and the first semiconductor element. The bump is between the first and second semiconductor elements and electrically connects the first and second semiconductor elements. The bonding portion is between the first and second semiconductor elements, bonds the first semiconductor element to the second semiconductor element, and has a first elastic modulus. The resin portion has a second elastic modulus higher than the first elastic modulus. The resin portion is between the first and second semiconductor elements. The first semiconductor element is between a second portion of the resin portion and the wiring substrate. A third portion of the resin portion is overlapped with the first and second semiconductor elements.
Abstract:
According to one embodiment a method is provided including positioning and bonding a plurality of first semiconductor chips in a coplanar relation on a first substrate, laminating at least a plurality of second semiconductor chips on the first semiconductor chips, cutting the first substrate for separation into a discrete chip lamination, aligning an electrode pad provided on a surface of the discrete lamination with an electrode pad on a second substrate, and temporarily connecting the electrode pads on the lamination and the second substrate in an opposing relation to the first substrate, providing electrical connection between the electrode pads by a reflow process, flowing a liquid resin from the side of the first substrate towards the second substrate to seal the chip lamination and spaces between the chip lamination and the first and second substrate, and cutting the chip lamination to form a discrete device.
Abstract:
A semiconductor manufacturing apparatus includes: a collet which sucks a semiconductor chip having a main surface on which a bump is formed, and an actuator which transfers the sucked semiconductor chip onto a mounting substrate or another semiconductor chip by driving the collet. A recessed portion for avoiding a contact between the collet and the bump is formed on a suction surface of the collet which sucks the semiconductor chip.
Abstract:
According to one embodiment, a first electrode is formed on a first face of a first semiconductor chip, and a second electrode and a protrusion are formed on a second face of a second semiconductor chip. The first semiconductor chip and the second semiconductor chip are spaced from one another by the protrusion in such a manner that the first face and the second face face each other. The first semiconductor chip and the second semiconductor chip are subject to reflow to be electrically connected to each other, and then the protrusion is cured at a temperature lower than a reflow temperature.