Compound semiconductor light-emitting device of gallium nitride series
    3.
    发明授权
    Compound semiconductor light-emitting device of gallium nitride series 失效
    氮化镓系复合半导体发光元件

    公开(公告)号:US6067309A

    公开(公告)日:2000-05-23

    申请号:US921693

    申请日:1997-09-02

    摘要: There is disclosed a compound semiconductor light-emitting device of gallium nitride series having high reliability, which can be operated by a low threshold current and a low operation voltage without deterioration. The device comprises a p-type semiconductor structure having high carrier concentration, which can easily form a low resistance p-side electrode, and which can uniformly implant carriers to an active layer highly efficiently. A p electrode contact layer having Mg added thereto is used as a p-type semiconductor layer. At least a Ga.sub.x2 In.sub.y2 Al.sub.z2 N (x2+y2+z2=1, 0.ltoreq.x2, z2.ltoreq.1, 0

    摘要翻译: 公开了一种具有高可靠性的氮化镓系化合物半导体发光元件,可以通过低阈值电流和低工作电压进行操作而不劣化。 该装置包括具有高载流子浓度的p型半导体结构,其可以容易地形成低电阻p侧电极,并且可以高效地均匀地将载流子注入活性层。 使用具有Mg的p电极接触层作为p型半导体层。 在有源层上形成至少一个Gax2Iny2Alz2N(x2 + y2 + z2 = 1,0,x2,z2,...,0

    Semiconductor light emitting element, and its manufacturing method
    4.
    发明授权
    Semiconductor light emitting element, and its manufacturing method 有权
    半导体发光元件及其制造方法

    公开(公告)号:US06303405B1

    公开(公告)日:2001-10-16

    申请号:US09404727

    申请日:1999-09-24

    IPC分类号: H01L2100

    摘要: A semiconductor light emitting element of nitride compound semiconductors excellent in cleavability, heat radiation and resistance to leakage is made by epitaxially grow a nitride compound semiconductor layers on a substrate of sapphire, for example, and thereafter separating the substrate. For separating the substrate, there are a technique using a abruption mechanism susceptible to a stress such as a “lift-off layer” and a recesses on a substrate. A technique using laser light to cause a local dense heat stress at the abruption mechanism is effective. A nitride compound semiconductor obtained by separating the substrate may be used as a new substrate to epitaxially grow high-quality nitride compound semiconductors thereon.

    摘要翻译: 例如,通过在蓝宝石衬底上外延生长氮化物半导体层,然后分离衬底,进行切割性,散热性和耐漏电性优异的氮化物半导体发光元件。 为了分离衬底,存在使用易受诸如“剥离层”和衬底上的凹陷等应力敏感的剥离机构的技术。 使用激光在剥离机制下引起局部致密热应激的技术是有效的。 通过分离衬底获得的氮化物化合物半导体可以用作新的衬底,以在其上外延生长高质量的氮化物半导体。

    Semiconductor laser device
    8.
    发明授权
    Semiconductor laser device 失效
    半导体激光器件

    公开(公告)号:US5343486A

    公开(公告)日:1994-08-30

    申请号:US962725

    申请日:1992-10-19

    摘要: According to this invention, a semiconductor laser device includes a compound semiconductor substrate, a double hetero structure formed on the compound semiconductor substrate and having an active layer and first and second cladding layers which interpose the active layer, a current blocking region formed in one facet portion of the double hetero structure in a resonator direction. A reflecting layer is arranged on the other facet of the double hetero structure in the resonator direction and has a reflectance higher than that of a natural cleavage surface, thereby shifting the oscillation wavelength of the laser device to a long wavelength side with respect to the wavelength of spontaneous radiation emitted from one facet of the double hetero structure.

    摘要翻译: 根据本发明,半导体激光器件包括化合物半导体衬底,在化合物半导体衬底上形成的具有有源层的双异质结构以及插入有源层的第一和第二覆层,形成在一个面上的电流阻挡区 部分的双异质结构在谐振器方向上。 在双异质结构的另一方面,在谐振器方向上设置反射层,其反射率高于天然解理面的反射率,从而将激光器件的振荡波长相对于波长 从双异质结构的一个面发射的自发辐射。

    Semiconductor laser device
    9.
    发明授权
    Semiconductor laser device 失效
    半导体激光器件

    公开(公告)号:US5282218A

    公开(公告)日:1994-01-25

    申请号:US896536

    申请日:1992-06-09

    摘要: A semiconductor laser device for radiating a laser beam from a double heterostructure section in which injected carriers having an energy source of the laser beam are confined consists of a compound semiconductor substrate with a prescribed lattice constant for loading the double heterostructure section, a lattice mismatched active layer with a first lattice constant which is 0.5% to 2.0% larger than the lattice constant of the substrate in the double heterostructure section for radiating the laser beam, a lattice mismatched cladding layer with a second lattice constant which is 0.2% to 2.0% smaller than the lattice constant of the substrate for confining the injected carriers in the active layer, and a cladding layer for confining the injected carriers in the active layer by co-operating with the lattice mismatched cladding layer.

    摘要翻译: 一种半导体激光器件,用于从双异质结部分发射激光束,其中具有激光束能量源的注入载流子被限制在一起,由具有用于加载双异质结部分的规定晶格常数的化合物半导体衬底,晶格失配的有源 层,其具有比用于照射激光的双异质结部分中的衬底的晶格常数大0.5%至2.0%的第一晶格常数,具有小于0.2%至2.0%的第二晶格常数的晶格失配覆层 比用于将注入的载流子限制在有源层中的基板的晶格常数以及用于通过与晶格失配包层合作来限制注入的载流子在有源层中的包覆层。

    Manufacturing method of semiconductor laser with non-absorbing mirror
structure
    10.
    发明授权
    Manufacturing method of semiconductor laser with non-absorbing mirror structure 失效
    具有非吸收镜结构的半导体激光器的制造方法

    公开(公告)号:US5181218A

    公开(公告)日:1993-01-19

    申请号:US619606

    申请日:1990-11-29

    摘要: An InGaAlP NAM structure laser is formed with a double-heterostructure section disposed on an n-type GaAs substrate. The double-heterostructure section includes a first cladding layer of n-type InGaAlP, a non-doped InGaP active layer, and a second cladding layer of p-type InGaAlP. An n-type GaAs current-blocking layer having a stripe opening and a p-type GaAs contact layer are sequentially formed on the second cladding layer by MOCVD crystal growth. A low-energy band gap region is defined in a central region of the active layer located immediately below the stripe opening. A high-energy band gap region is defined in a peripheral region of the active layer corresponding to a light output end portion of the laser and located immediately below the current-blocking layer. Therefore, self absorption of an oscillated laser beam at the output end portion can be reduced or prevented.

    摘要翻译: InGaAlP NAM结构激光器形成有设置在n型GaAs衬底上的双异质结构部分。 双异质结构部分包括n型InGaAlP的第一包层,未掺杂的InGaP有源层和p型InGaAlP的第二包层。 通过MOCVD晶体生长,在第二覆层上依次形成具有条形开口和p型GaAs接触层的n型GaAs电流阻挡层。 在位于条形开口正下方的活性层的中心区域中限定低能带隙区域。 在活性层的与激光的光输出端部对应的周边区域中限定高能带隙区域,位于电流阻挡层的正下方。 因此,可以减少或防止在输出端部处的振荡的激光束的自吸收。