Abstract:
A method for manufacturing a light-emitting element includes dividing a semiconductor structure into a plurality of light-emitting portions by removing a portion of the semiconductor structure so as to form an exposed region, a first surface being exposed from under the semiconductor structure in the exposed region; etching protrusions formed in the exposed region; bonding a light-transmitting body to a second surface so as to form a bonded body; forming a plurality of modified regions along the exposed region inside the substrate by irradiating a laser beam on the exposed region from the first surface side; removing a portion of the light-transmitting body that overlaps the plurality of modified regions in a plan view; and singulating the bonded body along the modified regions.
Abstract:
A side-view type light emitting device having a bottom surface thereof as a light emission surface and one side surface thereof as amounting surface for mounting on amounting substrate includes a stacked semiconductor layer having a first semiconductor layer, an active layer, and a second semiconductor layer which are stacked in that order from a side of the bottom surface; a first connecting electrode exposed from the one side surface and electrically connected to the first semiconductor layer; a metal wire having one end thereof electrically connected to an upper surface of the second semiconductor layer; a second connecting electrode exposed from the one side surface and electrically connected to the other end of the metal wire; and a resin layer which covers at least a part of each of the first semiconductor layer, the second semiconductor layer, the first connecting electrode, the second connecting electrode and the metal wire and which is configured to form an upper surface and side surfaces of the light emitting device.
Abstract:
A light emitting device includes a semiconductor chip including a p-type semiconductor layer and an n-type semiconductor layer, the semiconductor chip being adapted to emit light between the p-type semiconductor layer and the n-type semiconductor layer; a p-side pad electrode disposed on an upper surface side of the semiconductor chip and over the p-type semiconductor layer; an n-side pad electrode disposed on an upper surface side of the semiconductor chip and over the n-type semiconductor layer; a resin layer disposed to cover the upper surface of the semiconductor chip; a p-side connection electrode and an n-side connection electrode disposed at an outer surface of the resin layer and positioned on the upper surface side of the semiconductor chip; and a metal wire disposed in the resin. The metal wire is adapted to make connection at least one of between the p-side pad electrode and the p-side connection electrode, and between the n-side pad electrode and the n-side connection electrode.
Abstract:
To provide a method of manufacturing at low cost a light emitting device that converts the wavelength of light radiated by a light emitting element and emits, the method includes: forming a phosphor layer on a translucent substrate; arranging a plurality of light emitting elements with a predetermined spacing, the light emitting elements having an electrode formed face provided with positive and negative electrodes respectively and arranged with the electrode formed faces on the top; embedding a resin containing phosphor particles so that an upper face of the embedded resin does not bulge over a plane containing the electrode formed faces; and curing the resin, and then cutting and dividing the cured resin, the phosphor layer and the translucent substrate into a plurality of light emitting devices each including one or more of the light emitting elements.
Abstract:
The invention provides semiconductor light-emitting devices which have a semiconductor layer on a principal surface of a translucent substrate and a reflective layer on a second principal surface opposite to the principal surface having the semiconductor layer, which enables that the peeling of the reflective layer from the translucent substrate is suppressed. A semiconductor light-emitting device includes a first metal layer disposed in contact with a second principal surface of a translucent substrate, a second metal layer disposed in contact with at least the second principal surface or a side surface of the translucent substrate around the first metal layer, and a third metal layer disposed on the second metal layer. The first metal layer has a reflectance with respect to a peak wavelength of light emitted from an emitting layer higher than the reflectance of the second metal layer. The second metal layer has an adhesion with respect to the translucent substrate higher than the adhesion between the first metal layer and the translucent substrate.
Abstract:
To provide a method of manufacturing at low cost a light emitting device that converts the wavelength of light radiated by a light emitting element and emits, the method includes: forming a phosphor layer on a translucent substrate; arranging a plurality of light emitting elements with a predetermined spacing, the light emitting elements having an electrode formed face provided with positive and negative electrodes respectively and arranged with the electrode formed faces on the top; embedding a resin containing phosphor particles so that an upper face of the embedded resin does not bulge over a plane containing the electrode formed faces; and curing the resin, and then cutting and dividing the cured resin, the phosphor layer and the translucent substrate into a plurality of light emitting devices each including one or more of the light emitting elements.
Abstract:
A manufacturing method of a light emitting device includes preparing a wafer that is provided by arranging a plurality of semiconductor light emitting elements including semiconductor stacks and electrodes provided on first surfaces of the semiconductor stacks. A metal wire is wired in an arc shape between the electrodes of the plurality of semiconductor light emitting elements that are arranged in one direction on the wafer so as to connect each of the electrodes and the metal wire. A resin layer is provided on a side of the first surfaces of the semiconductor stacks in such a way that the metal wire is accommodated inside the resin layer. The wafer is cut along a boundary line to segment the plurality of semiconductor light emitting elements so as to singulate the plurality of semiconductor light emitting elements.
Abstract:
A method of manufacturing a light emitting device includes preparing wafer with a plurality of light emitting elements arrayed on a growth substrate, on a first side of a semiconductor stacked layer body, forming a resin layer which includes metal wires respectively connected to a p-side electrode and an n-side electrode, forming a groove by removing at least portion of the resin layer from an upper surface side in a boundary region between the light emitting elements and exposing end surfaces of metal wires which are internal conductive members on an inner side surface defining a groove, forming electrodes for external connection respectively connecting to exposed end surfaces of metal wires, and singulating the wafer into a plurality of singulated light emitting elements.
Abstract:
A light emitting device includes a semiconductor chip including a p-type semiconductor layer and an n-type semiconductor layer, the semiconductor chip being adapted to emit light between the p-type semiconductor layer and the n-type semiconductor layer; a p-side pad electrode disposed on an upper surface side of the semiconductor chip and over the p-type semiconductor layer; an n-side pad electrode disposed on an upper surface side of the semiconductor chip and over the n-type semiconductor layer; a resin layer disposed to cover the upper surface of the semiconductor chip; a p-side connection electrode and an n-side connection electrode disposed at an outer surface of the resin layer and positioned on the upper surface side of the semiconductor chip; and a metal wire disposed in the resin. The metal wire is adapted to make connection at least one of between the p-side pad electrode and the p-side connection electrode, and between the n-side pad electrode and the n-side connection electrode.
Abstract:
To provide a method of manufacturing at low cost a light emitting device that converts the wavelength of light radiated by a light emitting element and emits, the method includes: forming a phosphor layer on a translucent substrate; arranging a plurality of light emitting elements with a predetermined spacing, the light emitting elements having an electrode formed face provided with positive and negative electrodes respectively and arranged with the electrode formed faces on the top; embedding a resin containing phosphor particles so that an upper face of the embedded resin does not bulge over a plane containing the electrode formed faces; and curing the resin, and then cutting and dividing the cured resin, the phosphor layer and the translucent substrate into a plurality of light emitting devices each including one or more of the light emitting elements.