Abstract:
A light emitting diode apparatus includes a substrate, a first conductive type semiconductor layer, a second conductive type semiconductor layer, a mesa, a lower insulating layer, a first pad and a second pad. The substrate has a first surface and a second surface opposite to the first surface. The first conductivity type semiconductor layer is disposed on the first surface of the substrate. The mesa is disposed on the first conductive semiconductor layer and has an active layer and the second conductive semiconductor layer. A peripheral edge of the first conductive semiconductor layer is exposed. The lower insulating layer covers the mesa and the first conductive semiconductor layer and has a plurality of first openings exposing the first conductive semiconductor layer along a peripheral edge of the substrate.
Abstract:
A light emitting device having a wide beam angle and a method of fabricating the same. The light emitting device includes a light emitting structure, a substrate disposed on the light emitting structure, and an anti-reflection layer covering side surfaces of the light emitting structure and the substrate, and at least a portion of an upper surface of the substrate is exposed.
Abstract:
A light emitting device including a light emitting structure disposed on one surface of a substrate and a transflective portion disposed on the other surface of the substrate. The transflective portion and the substrate have different indexes of refraction from one another.
Abstract:
A photo detection package including a package body configured to have an upward opened groove unit formed in the package body, a photo detection device mounted on a bottom surface of the groove unit and electrically connected externally, and a Light-Emitting Diode (LED) mounted on an inner surface of the groove unit that is formed of an inclined surface on a periphery of the bottom surface and electrically connected externally.
Abstract:
A light-emitting diode package includes a frame portion with a chip-mounting region defined in an upper portion thereof, and first and second frames spaced apart from each other. A light-emitting diode is mounted on at least a portion of the chip-mounting region with a bonding layer interposed therebetween. The frame portion includes a depressed portion formed on an upper surface thereof, and the depressed portion includes the chip-mounting region defined on a bottom thereof. The depressed portion also includes a step portion disposed at an outer upper end thereof.
Abstract:
Disclosed are a light-emitting device and a manufacturing method thereof. A light-emitting device according to an exemplary embodiment of the present invention includes a base, a lighting element disposed on the base, the lighting element including an epitaxial layer and a substrate disposed on the epitaxial layer, a contact member disposed between the lighting element and the base, the contact member electrically connecting the lighting element and the base, and a lens disposed on the substrate.
Abstract:
A light emitting diode is provided to include a first conductive-type semiconductor layer; a mesa including a second conductive-type semiconductor layer disposed on the first conductive-type semiconductor layer and an active layer interposed between the first and the second conductive-type semiconductor layers; and a first electrode disposed on the mesa, wherein the first conductive-type semiconductor layer includes a first contact region disposed around the mesa along an outer periphery of the first conductive-type semiconductor layer; and a second contact region at least partially surrounded by the mesa, the first electrode is electrically connected to at least a portion of the first contact region and at least a portion of the second contact region, and a linewidth of an adjoining region between the first contact region and the first electrode is greater than the linewidth of an adjoining region between the second contact region and the first electrode.
Abstract:
The devices, systems and techniques disclosed in this patent document include photocatalytic filter devices and can be used to provide a method for manufacturing a photocatalytic filter with improved adhesion. In addition, the present disclosure of this patent document includes technology to provide a method for reactivating a photocatalytic filter. Using the disclosed techniques, even if a photocatalytic filter is contaminated, the contaminated photocatalytic filter is easily reactivated while maintaining improved adhesion.
Abstract:
A light emitting diode including a first conductive type semiconductor layer, a mesa disposed on the first conductive type semiconductor layer, the mesa including an active layer and a second conductive type semiconductor layer, a reflective electrode disposed on the mesa and configured to be in ohmic-contact with the second conductive type semiconductor layer, a current spreading layer disposed on the mesa and the reflective electrode, the current spreading layer including a first portion configured to be in ohmic-contact with an upper surface of the first conductive type semiconductor layer, a first n-contact region spaced apart from a second n-contact region with the mesa disposed between the first and second n-contact regions, and an insulation layer including a first opening exposing the reflective electrode between the first and second n-contact regions. The first and second n-contact regions have a second opening that exposes the first conductive type semiconductor layer.
Abstract:
TA photo detection device, including a substrate, a band-pass filter layer formed over the substrate, a light absorption layer formed over the band-pass filter layer, a Schottky layer formed on a portion of the light absorption layer, a first electrode layer formed on a portion of the Schottky layer, and a second electrode layer formed on the light absorption layer and spaced apart from the Schottky layer.