Abstract:
A semiconductor integrated device, comprising: a package defining an internal space and having an acoustic-access opening in acoustic communication with an environment external to the package; a MEMS acoustic transducer, housed in the internal space and provided with an acoustic chamber facing the acoustic-access opening; and a filtering module, which is designed to inhibit passage of contaminating particles having dimensions larger than a filtering dimension and is set between the MEMS acoustic transducer and the acoustic-access opening. The filtering module defines at least one direct acoustic path between the acoustic-access opening and the acoustic chamber.
Abstract:
A stack of chips is formed by a first integrated-circuit chip and a second integrated-circuit chip. The chips have opposing faces which are separated from each other by an interposed spacer. The spacer is fastened by adhesion to only one of the opposing faces. The opposing faces are fastened to each other by a local adhesive which is separate from spacer.
Abstract:
A stack of chips is formed by a first integrated-circuit chip and a second integrated-circuit chip. The chips have opposing faces which are separated from each other by an interposed spacer. The spacer is fastened by adhesion to only one of the opposing faces. The opposing faces are fastened to each other by a local adhesive which is separate from spacer.
Abstract:
An electronic component includes one or more circuits having a front surface and a light-permeable package material. A lid member is attached to a front surface of the circuit. The lid member is made, for example, of a light-blocking material such as a semiconductor or metal material. A laser marking is applied onto the lid member.
Abstract:
A method of stacking a plurality of first dies to a respective plurality of second dies, each one of the first dies having a surface including a surface coupling region which is substantially flat, each one of the second dies having a respective surface including a respective surface coupling region which is substantially flat, the method comprising the steps of: forming, by means of a screen printing technique, an adhesive layer on the first dies at the respective surface coupling regions; and arranging the surface coupling region of each second die in direct physical contact with a respective adhesive layer of a respective first die among said plurality of first dies.
Abstract:
A method of stacking a plurality of first dies to a respective plurality of second dies, each one of the first dies having a surface including a surface coupling region which is substantially flat, each one of the second dies having a respective surface including a respective surface coupling region which is substantially flat, the method comprising the steps of: forming, by means of a screen printing technique, an adhesive layer on the first dies at the respective surface coupling regions; and arranging the surface coupling region of each second die in direct physical contact with a respective adhesive layer of a respective first die among said plurality of first dies.
Abstract:
A process for assembly of an integrated device, envisages: providing a first body of semiconductor material integrating at least one electronic circuit and having a top surface; providing a second body of semiconductor material integrating at least one microelectromechanical structure and having a bottom surface; and stacking the second body on the first body with the interposition, between the top surface of the first body and the bottom surface of the second body, of an elastic spacer material. Prior to the stacking step, the step is envisaged of providing, in an integrated manner, at the top surface of the first body a confinement and spacing structure that confines inside it the elastic spacer material and supports the second body at a distance from the first body during the stacking step.
Abstract:
A process for assembly of an integrated device, envisages: providing a first body of semiconductor material integrating at least one electronic circuit and having a top surface; providing a second body of semiconductor material integrating at least one microelectromechanical structure and having a bottom surface; and stacking the second body on the first body with the interposition, between the top surface of the first body and the bottom surface of the second body, of an elastic spacer material. Prior to the stacking step, the step is envisaged of providing, in an integrated manner, at the top surface of the first body a confinement and spacing structure that confines inside it the elastic spacer material and supports the second body at a distance from the first body during the stacking step.