摘要:
A method of fabrication of high-k paraelectric metal oxide films at low temperatures utilizing ordered mesoporous metal oxide thin films synthesized by organic templating methodology. The process consisting of (a) chemical solution deposition of periodic ordered mesoporous structures containing high-k metal oxide films, (b) removal of organic template additives, (c) infiltration of the pores with an appropriate second phase, and (d) low temperature thermal and/or annealing of infiltrated films.
摘要:
A method of fabrication of high-k paraelectric metal oxide films at low temperatures utilizing ordered mesoporous metal oxide thin films synthesized by organic templating methodology. The process consisting of (a) chemical solution deposition of periodic ordered mesoporous structures containing high-k metal oxide films, (b) removal of organic template additives, (c) infiltration of the pores with an appropriate second phase, and (d) low temperature thermal and/or annealing of infiltrated films.
摘要:
The present invention provides an organosiloxane comprising at least 80 weight percent of Formula I: [Y0.01-1.0SiO1.5-2]a[Z0.01-1.0SiO1.5-2]b[H0.01-1.0SiO1.5-2]c where Y is aryl; Z is alkenyl; a is from 15 percent to 70 percent of Formula I; b is from 2 percent to 50 percent of Formula I; and c is from 20 percent to 80 percent of Formula I. The present composition is useful in semiconductor devices and may be advantageously used as an etch stop.
摘要:
The present invention pertains to solid composite cathodes which comprise (a) an electroactive sulfur-containing cathode material which, in its oxidized state, comprises a polysulfide moiety of the formula, —Sm—, wherein m is an integer from 3 to 10; and (b) a non-electroactive particulate material having a strong adsorption of soluble polysulfides. The present invention also pertains to electric current producing cells comprising such solid composite cathodes, and methods of making such solid composite cathodes and electric current producing cells.
摘要:
The present invention pertains to composite cathodes suitable for use in an electrochemical cell, said cathodes comprising: (a) an electroactive sulfur-containing cathode material, wherein said electroactive sulfur-containing cathode material, in its oxidized state, comprises a polysulfide moiety of the formula --S.sub.m --, wherein m is an integer equal to or greater than 3; and, (b) an electroactive transition metal chalcogenide composition, which encapsulates said electroactive sulfur-containing cathode material, and which retards the transport of anionic reduction products of said electroactive sulfur-containing cathode material, said electroactive transition metal chalcogenide composition comprising an electroactive transition metal chalcogenide having the formula M.sub.j Y.sub.k (OR).sub.l wherein: M is a transition metal; Y is the same or different at each occurrence and is oxygen, sulfur, or selenium; R is an organic group and is the same or different at each occurrence; j is an integer ranging from 1 to 12; k is a number ranging from 0 to 72; and l is a number ranging from 0 to 72; with the proviso that k and l cannot both be 0. The present invention also pertains to methods of making such composite cathodes, cells comprising such composite cathodes, and methods of making such cells.
摘要:
Chemical mechanical planarization or spin etch planarization of surfaces of copper, tantalum and tantalum nitride is accomplished by means of the chemical formulations of the present invention. The chemical formulations may optionally include abrasive particles and which may be chemically reactive or inert. Contact or non-contact CMP may be performed with the present chemical formulations. Substantially 1:1 removal rate selectivity for Cu and Ta/TaN is achieved.
摘要:
The present invention pertains to solid composite cathodes which comprise (a) an electroactive sulfur-containing cathode material which, in its oxidized state, comprises a polysulfide moiety of the formula, —Sm—, wherein m is an integer from 3 to 10; and (b) a non-electroactive particulate non-fibrous material having a strong adsorption of soluble polysulfides. The present invention also pertains to electric current producing cells comprising such solid composite cathodes, and methods of making such solid composite cathodes and electric current producing cells.
摘要:
A composite substrate is fabricated by applying to a glass fiber substrate a liquid sol-gel composition and then sintering the sol-gel to convert it to the glass phase. A polymeric coating is then applied.
摘要:
The present invention pertains to composite cathodes suitable for use in an electrochemical cell, said cathodes comprising: (a) an electroactive sulfur-containing cathode material, wherein said electroactive sulfur-containing cathode material, in its oxidized state, comprises a polysulfide moiety of the formula —Sm—, wherein m is an integer equal to or greater than 3; and, (b) an electroactive transition metal chalcogenide composition, which encapsulates said electroactive sulfur-containing cathode material, and which retards the transport of anionic reduction products of said electroactive sulfur-containing cathode material, said electroactive transition metal chalcogenide composition comprising an electroactive transition metal chalcogenide having the formula MjYk(OR)l wherein: M is a transition metal; Y is the same or different at each occurrence and is oxygen, sulfur, or selenium; R is an organic group and is the same or different at each occurrence; j is an integer ranging from 1 to 12; k is a number ranging from 0 to 72; and l is a number ranging from 0 to 72; with the proviso that k and l cannot both be 0. The present invention also pertains to methods of making such composite cathodes, cells comprising such composite cathodes, and methods of making such cells.
摘要:
The present invention involves the hydrothermal treatment of nanostructured films to form high k PMOD™ films for use in applications that are temperature sensitive, such as applications using a polymer based substrate. After a PMOD™ precursor is deposited and converted on a substrate, and possibly after other process steps, the amorphous, nanoporous directly patterned film is subjected to low temperature hydrothermal treatment to densify and possibly crystallize the resulting high dielectric PMOD™ film. A post hydrothermal treatment bake is then performed to remove adsorped water.