摘要:
A blood pressure monitor includes a cuff to be worn on a living body portion provided with an air component for inflating and deflating said cuff, and a main body detachably mounted on the cuff provided with an electrical component, in which the main body is electrically connected with the cuff by wire or wireless.
摘要:
A transparent board is positioned on a support board provided with a positioning mark, and a release material is provided. A semiconductor element is then positioned so that the electrode element faces upward, and the support board is then removed. An insulating resin is then formed on the release material so as to cover the semiconductor element; and a via, a wiring layer, an insulation layer, an external terminal, and a solder resist are then formed. The transparent board is then peeled from the semiconductor device through the use of the release material. A chip can thereby be mounted with high precision, there is no need to provide a positioning mark during mounting of the chip on the substrate in the manufacturing process, and the substrate can easily be removed. As a result, a semiconductor device having high density and a thin profile can be manufactured at low cost.
摘要:
There is provided an ink for printing a conductor pattern on a substrate, including platinum particles, wherein 70% or more of the platinum particles have a particle size of 0.05 to 0.5 μm. Even when the viscosity of the printing ink is controlled to a relatively low level for use in ink-jet printing process, it is possible by such particle size distribution control to prevent sedimentation of the platinum particles and excessive shrinkage of the conductor pattern due to sintering of the platinum particles during firing so that the conductor pattern can attain improved conduction characteristics.
摘要:
A wiring board including a built-in semiconductor element includes the semiconductor element, a peripheral insulating layer covering an outer peripheral side surface of the semiconductor element, an upper surface-side wiring provided on an upper surface side of the wiring board, and a lower surface-side wiring provided on a lower surface side of the wiring board. The semiconductor element includes a first wiring structure layer including a first wiring and a first insulating layer alternately provided on a semiconductor substrate, and a second wiring structure layer including a second wiring and a second insulating layer alternately provided on the first wiring structure layer. The upper surface-side wiring includes a wiring electrically connected to the first wiring via the second wiring. The second wiring is thicker than the first wiring and thinner than the upper surface-side wiring. The second insulating layer is formed of a resin material and is thicker than the first insulating layer.
摘要:
A semiconductor device includes a core substrate, and at least one insulating layer and at least one wiring layer that are disposed on a first surface and a second, opposite surface of the substrate. The semiconductor device includes a via disposed in the insulating layer and in the core substrate, and which connects the wiring layers to one another. The semiconductor device includes a semiconductor element mounted on the first surface, forming an electrode terminal that faces up. The semiconductor device includes a connecting portion that penetrates the insulating layer and directly connects the electrode terminal of the semiconductor element and the wiring layer on the first surface. A minimum wiring pitch of this wiring that of any wiring layer on the second surface.
摘要:
A nuclear reactor vessel structure includes an inner peripheral tube-shaped steel plate, an outer peripheral tube-shaped steel plate, and an intermediate tube-shaped steel plate disposed between the inner and outer peripheral tube-shaped steel plates, and is configured to support a nuclear reactor vessel on the inner peripheral side of a tube-shaped structure with concrete placed between the steel plates. The nuclear reactor vessel structure includes a support having a tube-shaped plate disposed on the inner peripheral side of the intermediate tube-shaped steel plate, and an annular plate which protrudes to the inner peripheral side of the tube-shaped plate and to which a connection section is affixed. The support is affixed to the concrete, which is placed between the inner peripheral and the intermediate tube-shaped steel plates, by first bar members, and the support is also affixed to the inner peripheral tube-shaped steel plate by second bar members.
摘要:
An object of the present invention is to provide a semiconductor device built-in substrate, which can be made thin and can suppress occurrence of warpage. The present invention provides a semiconductor substrate which is featured by including a first semiconductor device serving as a substrate, a second semiconductor device placed on the circuit surface side of the first semiconductor device in the state where the circuit surfaces of the first and second semiconductor devices are placed to face in the same direction, and an insulating layer incorporating therein the second semiconductor device, and which is featured in that a heat dissipation layer is formed at least between the first semiconductor device and the second semiconductor device, and in that the heat dissipation layer is formed on the first semiconductor device so as to extend up to the outside of the second semiconductor device.
摘要:
In a manufacturing method of a semiconductor device incorporating a semiconductor element in a multilayered wiring structure including a plurality of wiring layers and insulating layers, a semiconductor element is mounted on a silicon support body whose thickness is reduced to a desired thickness and which are equipped with a plurality of through-vias running through in the thickness direction; an insulating layer is formed to embed the semiconductor element; then, a plurality of wiring layers is formed on the opposite surfaces of the silicon support body in connection with the semiconductor element. Thus, it is possible to reduce warping which occurs in proximity to the semiconductor element in manufacturing, thus improving a warping profile in the entirety of a semiconductor device. Additionally, it is possible to prevent semiconductor elements from becoming useless, improve a yield rate, and produce a thin-type semiconductor device with high-density packaging property.
摘要:
A semiconductor device comprises: a semiconductor element; a support substrate arranged on a surface of the semiconductor element opposite to a surface thereof provided with a pad, the support substrate being wider in area than the semiconductor element; a burying insulating layer on the support substrate for burying the semiconductor element therein; a fan-out interconnection led out from the pad to an area on the burying insulating layer lying more peripherally outwardly than the semiconductor element; and a reinforcement portion arranged in a preset area on top of outer periphery of the semiconductor element for augmenting the mechanical strength of the burying insulating layer and the fan-out interconnection.
摘要:
A wiring board including a built-in semiconductor element includes the semiconductor element, a peripheral insulating layer covering an outer peripheral side surface of the semiconductor element, an upper surface-side wiring provided on an upper surface side of the wiring board, and a lower surface-side wiring provided on a lower surface side of the wiring board. The semiconductor element includes a first wiring structure layer including a first wiring and a first insulating layer alternately provided on a semiconductor substrate, and a second wiring structure layer including a second wiring and a second insulating layer alternately provided on the first wiring structure layer. The upper surface-side wiring includes a wiring electrically connected to the first wiring via the second wiring. The second wiring is thicker than the first wiring and thinner than the upper surface-side wiring. The second insulating layer is formed of a resin material and is thicker than the first insulating layer.