Abstract:
There is a film forming apparatus comprising: a first holder holding a first target formed of a first material; a second holder holding a second target formed of a second material different from the first material; and a mounting table holding a substrate, the mounting table rotatable with a central axis of the mounting table as a rotation axis, wherein a distance from the central axis of the mounting table to a center of a sputter surface of the first target is different from a distance from the central axis of the mounting table to a center of a sputter surface of the second target.
Abstract:
A film forming apparatus includes: a processing container; a substrate holder that holds the substrate in the processing container; and a target assembly disposed in an upper side of the substrate holder. The target assembly includes: a target made of metal, including a main body and a flange provided around the main body, and emitting sputter particles from the main body; a target holder including a target electrode configured to supply power to the target, and holding the target; a target clamp that clamps the flange of the target to the target holder; and an anti-deposition shield provided around the main body of the target to cover the flange, the target clamp, and the target holder, and having a labyrinth structure in which an inner tip end thereof is disposed to enter a recess between the main body of the target and the target clamp.
Abstract:
A deposition device according to one embodiment includes a processing container. A mounting table is installed inside the processing container, and a metal target is installed above the mounting table. Further, a head is configured to inject an oxidizing gas toward the mounting table. This head is configured to move between a first region that is defined between the metal target and a mounting region where a target object is mounted on the mounting table and a second region spaced apart from a space defined between the metal target and the mounting region.
Abstract:
A film forming apparatus comprises a processing chamber connected to a ground potential, a holder configured to hold a target, a DC power supply configured to apply a DC voltage to the holder and an anti-adhesion shield disposed to surround the target and supported by the processing chamber through an insulating member. An impedance matcher is connected to the anti-adhesion shield and an RF power supply is connected to the impedance matcher.
Abstract:
A substrate processing apparatus includes: a stage including an electrostatic chuck configured to attract a substrate; a heater configured to heat the stage; a heating drive part configured to supply power to the heater so that a temperature of the stage becomes a target value; and a detector configured to detect an abnormality in attraction of the substrate by the electrostatic chuck, wherein the detector is further configured to detect the abnormality based on fluctuation of the power supplied to the heater, the fluctuation being generated by the attraction of the substrate by the electrostatic chuck.
Abstract:
A substrate processing apparatus includes: a stage having an electrostatic chuck configured to attract a substrate; a measurement part configured to measure a temperature of the stage; and a detection part configured to detect an abnormality caused by attraction of the substrate by the electrostatic chuck, based on a fluctuation of the temperature of the stage.
Abstract:
System and method of insulating film deposition. A sputter deposition chamber comprises a pair of targets made of the same insulating material. Each target is applied with a high frequency power signal concurrently. A phase adjusting unit is used to adjust the phase difference between the high frequency power signals supplied to the pair of targets to a predetermined value, thereby improving the in-plane thickness distribution of a resultant film. The predetermined value is target material specific.