Abstract:
The method of analyzing one or more samples arranged in sample receptacles of a platform that is configured to receive a plurality of separate samples includes the steps of measuring electromagnetic radiation transmitted or emitted by each sample, repeating the measurement a plurality of times at predetermined intervals, on the basis of each measurement, forming a result matrix comprising a plurality of cells, each cell of the result matrix corresponding to a sample receptacle of the plat-form, wherein a measurement value of each sample is used as an input for determining the visual properties of the respective cell in the result matrix, and displaying the results as consecutive matrixes in respect of time.
Abstract:
A scalable reaction and detection system for automated high throughput sequencing of nucleic acids involving a combination of chemical processes and observation processes independent of the chemistry processes. Discrete functional units may be configured in a manner that allows the system to interchangeably utilize different sequencing reaction components in conjunction with discrete apparatus components for optical image collection and/or analysis.
Abstract:
A portable system and method for measuring the concentration of multiple chemical or biological substances where an onsite analysis of such substances is needed. The new and original handheld sensor system uses a disposable optical test element and a spectroscopic detector that measures the test element response to specific analytes through a change in light absorbance, luminescence, and other forms of light-based response. In this way, reflection light intensities indicative of the test element response can be used to measure the concentration of the target analytes. The sensor system is also capable of being interfaced to an information processing unit or computer so that analytical data can be manipulated or stored electronically.
Abstract:
A multi-channel fluorescence measuring optical system and a multi-channel fluorescence sample analyzer using the optical system are provided. The multi-channel fluorescence measuring optical system, which irradiates light onto a plurality of sample channels and detecting fluorescence radiated from samples, includes: a light source; an integrator for giving the light irradiated from the light source a uniform intensity distribution; a sample holder having a plurality of sample channels on which the samples are mounted, wherein the samples are exited by the light emitted from the integrator; and a beam splitter between the integrator and the sample holder for dividing the incident light in a predetermined ratio. Since the light intensities of fluorescence images are detected using optical fiber bundles and photodiodes, the manufacturing cost can be greatly reduced, and the optical system can be miniaturized.
Abstract:
The present disclosure proposes a colorimetric method that couples sensor design with image processing to enable automated evaluation of test results obtained by paper-based sensors. The proposed method can match ink color and dye used in colorimetric reaction in terms of their absorption in spectral range (e.g., red, green, blue). A near-zero absorption channel can then be used to normalize absorption channels and construct a composite image.
Abstract:
The invention relates to a method and an apparatus for the investigation of a sample material by multiple sample light spots (501) generated by evanescent waves. An array of source light spots (510) is generated by a multi-spot generator, e.g. a multi-mode interferometer (106), and mapped onto sample light spots (501) in a sample layer (302) by (micro-)lenses (202, 203) or by the Talbot effect. The input light (504) of the source light spots (510) is shaped such that all of it is totally internally reflected at the interface between a transparent carrier plate (301) and the sample layer (302). Thus the sample light spots (501) consist of evanescent waves only and are restricted to a limited volume. In a preferred application, fluorescence stimulated in the sample light spots (501) is detected with spatial resolution by a CCD array (401).
Abstract:
A multichannel optical measuring system for measuring optical responses of samples illuminated by light of differing wavelengths has a plurality of measurement sample cuvettes each contain a sample to be measured. A first single light source provides a first illumination light. A plurality of sets of optical fibers direct the first illumination light from the first single light source to illuminate, along an optical axis, the samples contained in respective sample cuvettes. A second light source is provided for illuminating each respective sample cuvette with a second illumination light for measuring an intensity of transmitted light through the sample. The optical axis of the second illumination light is perpendicular to the optical axis of the first illumination light. A common photosensor disposed on the optical axis of the second light source measures the intensity of the first illumination light and the intensity of the transmitted light from each sample. Thus, the multichannel optical measuring system can simultaneously measure both the intensity of a first illumination light from a single light source, and the intensity of light transmitted through each sample, for a plurality of samples.
Abstract:
An apparatus is provided which includes a reaction cartridge having a plurality of reaction wells having different reagents disposed thereon, at least one well adapted to receive a sample, a well containing particles adapted to bind to the sample and which have the capability of being separated from cells which are not bound to the separation particles and at least one fluorophore adapted to bind to a specific type of cell in the sample, and a wash area adapted for washing a probe. An image forming device is provided to detect images which indicate whether specific reactions have occurred in each of the reaction wells. The apparatus also includes a mechanism for dispensing and aspirating liquids including a mechanism for detecting liquid levels. The device further includes logic for analyzing the information received from the image detection apparatus and processing the information to generate a visual indication of the results of the assays being performed. A microprocessor is provided to assist in the operation of the device as well as in the image processing.
Abstract:
The invention relates to photometric apparatus and method for determining a characteristic of individual ones of a plurality of samples contained within a plurality of sample chambers. The photometric apparatus includes an enclosure; a substantially uniform source of radiation coupled to the enclosure such that a plurality of sample chambers, disposed within the enclosure, are simultaneously illuminated by the uniform source; and apparatus for detecting an amount of radiation which is transmitted through individual ones of the sample chambers, the detecting apparatus having an output signal having a magnitude which is a function of the amount of radiation which is transmitted through an individual one of the sample chambers. The substantially uniform source of radiation may include at least one source of radiation having an output comprising wavelengths within a first range of wavelengths and an optically integrating sphere having a radiation input port coupled to the output of the source of radiation and a radiation output port coupled to the enclosure. The photometric apparatus may further include radiation directing devices interposed between the radiation output port and the plurality of sample chambers for simultaneously directing radiation emanating from the output port into each of the sample chambers. The directed radiation may be either focussed or collimated.
Abstract:
The disclosure is directed to a spectrophotometric measuring device equipped with a plurality of channels which automatically analyze many specimens with different testing items in a short period of time for application in biochemical automatic analysis or the like. The device of the invention is characterized in that white light from one light source is subjected to spectral diffraction through a long slit in X direction and wavelength dispersion irradiation light of an optical system including a spectroscope for dispersing spectrum of monochromatic light in Y direction intersecting at right angles with the slit, is projected onto one plate surface so as to select positions of the plate surface in the Y direction and X direction, and by providing the incident end faces of the optical fibers on the selected positions for free change-over, monochromatic lights of arbitrary wavelengths determined by the respective testing items are taken out, while the sample cell and detector are disposed to confront the optical fiber incident end faces for detection of intensity of light transmitting through the sample cell.