Abstract:
A semiconductor package with simulated wirebonds. A substrate is provided with a plurality of first pads on a first surface and a plurality of second pads on a second surface. Each of the first pads are electrically coupled to one or more of the second pads. At least one semiconductor device is located proximate the first surface of a substrate. The simulated wirebonds include at least a first dielectric layer selectively printed to create a plurality of recesses, and a conductive material located in the recesses to form first and second contact pads, and electrical traces electrically coupling the first and second contact pads. The first contact pads are electrically coupled to terminals on the semiconductor device and the second contact pads are electrically coupled to the first pads on the first surface of the substrate. An overmolding material seals the semiconductor device and the simulated wirebonds
Abstract:
An array of composite polymer-metal contact members adapted to form solder free electrical connections with a first circuit member. The contact members include a resilient polymeric base layer and an array of metalized traces printed on selected portions of the base layer. Conductive plating is applied to the metalized layer to create an array of conductive paths. The resilient polymeric base layer, the metalized layer, and the conductive plating have an aggregate spring constant sufficient to maintain distal portions of the contact members in a cantilevered configuration and to form a stable electrical connection between the distal portions and the first circuit member solely by compressive engagement.
Abstract:
A compliant printed flexible circuit including a flexible polymeric film and at least one dielectric layer bonded to the polymeric film with recesses corresponding to a target circuit geometry. A conductive material is printed in at least a portion of the recesses to form a circuit geometry. At least one dielectric covering layer is printed over at least the circuit geometry. Openings can be printed in the dielectric covering layer to provide access to at least a portion of the circuit geometry.
Abstract:
A probe assembly that acts as a temporary interconnect between terminals on a circuit member and a test station. The probe assembly can include a base layer of a dielectric material printed onto a surface of a fixture. The surface of the fixture can have a plurality of cavities. A plurality of discrete contact members can be formed in the plurality of cavities in the fixture and coupled to the base layer. A plurality of conductive traces can be printed onto an exposed surface of the base layer and electrically coupled with proximal ends of one or more of the discrete contact members. A compliant layer can be deposited over the conductive traces and the proximal ends of the contact members. A protective layer can be deposited on the compliant layer such that when the probe assembly is removed from the fixture the distal ends of the contact members contact terminals on the circuit member and the conductive traces electrically couple the circuit member to a test station. Electrical devices on the probe assembly can communicate with the test station to provide adaptive testing.
Abstract:
An interconnect assembly including a substrate with a plurality of through holes extending from a first surface to a second surface. A plurality of discrete contact member are located in the plurality of through holes. The contact members include proximal ends that are accessible from the second surface, distal ends extending above the first surface, and intermediate portions engaged with an engagement region of the substrate located between the first surface and the recesses. Retention members are coupled with at least a portion of the proximal ends to retain the contact members in the through holes. The retention members can be made from a variety of materials with different levels of conductivity, ranging from highly conductive to non-conductive.
Abstract:
A surface mount electrical interconnect is disclosed that provides an interface between a PCB and solder balls of a BGA device. The electrical interconnect includes a socket substrate and a plurality of electrically conductive contact members. The socket substrate has a first layer with a plurality of openings configured to receive solder balls of the BGA device and has a second layer with a plurality of slots defined therethrough that correspond to the plurality of openings. The contact members may be disposed in the openings in the first layer and through the plurality of slots of the second layer of the socket substrate. The contact members can be configured to engage a top portion, a center diameter, and a lower portion of the solder ball of the BGA device. Each contact member electrically couples a solder ball on the BGA device to the PCB.
Abstract:
A surface mount electrical interconnect adapted to provide an interface between solder balls on a BGA device and a PCB. The electrical interconnect includes a socket substrate with a first surface, a second surface, and a plurality of openings sized and configured to receive the solder balls on the BGA device. A plurality of electrically conductive contact tabs are bonded to the first surface of the socket substrate so that contact tips on the contact tabs extend into the openings. The contact tips electrically couple with the BGA device when the solder balls are positioned in the openings. Vias are located in the openings that electrically couple the contact tabs to contact pads located proximate the second surface of the socket substrate. Solder balls are bonded to the contact pad that are adapted to electrically and mechanically couple the electrical interconnect to the PCB.
Abstract:
A test socket that provides a temporary interconnect between terminals on an integrated circuit (IC) device and contact pads on a test printed circuit board (PCB). The test socket includes a compliant printed circuit and a socket housing. The compliant printed circuit includes at least one compliant layer, a plurality of first contact members located along a first major surface, a plurality of second contact members located along a second major surface, and a plurality of conductive traces electrically coupling the first and second contact members. The compliant layer is positioned to bias the first contact members against the terminals on the IC device and the second contact members against contact pads on the test PCB. The socket housing is coupled to the compliant printed circuit so the first contact members are positioned in a recess of the socket housing sized to receive the IC device.
Abstract:
An interconnect assembly including a resilient material with a plurality of through holes extending from a first surface to a second surface. A plurality of discrete, free-flowing conductive particles is located in the through holes. The conductive particles are preferably substantially free of non-conductive materials. A plurality of first contact tips are located in the through holes adjacent the first surface and a plurality of second contact tips are located in the through holes adjacent the second surface. The resilient material provides the required resilience, while the conductive particles provide a conductive path substantially free of non-conductive materials.
Abstract:
A wafer-level package for semiconductor devices and a method for making the package. At least one dielectric layer is selectively printed on at least a portion of the semiconductor devices creating first recesses aligned with a plurality of electrical terminals on the semiconductor devices. A conductive material is printed in the first recesses to form contact members on the semiconductor devices. At least one dielectric layer is selectively printed to create a plurality of second recesses corresponding to a target circuit geometry. A conductive material is printed in at least a portion of the second recesses to create a circuit geometry. The circuit geometry includes a plurality of exposed terminals adapted to electrically couple to another circuit member. The wafer is diced to provide a plurality of discrete packaged semiconductor devices.