Abstract:
Some implementations provide an integrated device (400) that includes a first substrate (402), a first die (404) coupled to the first substrate, a second die (406) coupled to the first die, and a second substrate (409) coupled to the second die. The second substrate is configured to provide an electrical path for a signal to the second die. The integrated device further includes a molding (408) surrounding the first die and the second die, and several through mold vias (TMVs) coupled to the second substrate. The TMVs (414, 416) are configured to provide an electrical path for the signal to the second die through the second substrate. In some implementations, the second substrate includes a signal distribution structure (411, 412) configured to provide the electrical path for the signal to the second die. In some implementations, the first substrate and the second substrate are part of a signal distribution network that provides signal to the second die.
Abstract:
Disclosed are embodiments of a substrate for an integrated circuit (IC) device. The substrate includes a core comprised of two or more discrete glass layers that have been bonded together. A separate bonding layer may be disposed between adjacent glass layers to couple these layers together. The substrate may also include build-up structures on opposing sides of the multi-layer glass core, or perhaps on one side of the core. Electrically conductive terminals may be formed on both sides of the substrate, and an IC die may be coupled with the terminals on one side of the substrate. The terminals on the opposing side may be coupled with a next-level component, such as a circuit board. One or more conductors extend through the multi-layer glass core, and one or more of the conductors may be electrically coupled with the build-up structures disposed over the core. Other embodiments are described and claimed.
Abstract:
The invention relates to an integrated circuit (1) having a substrate (2), which comprises metal contact surfaces (3) on a first surface (A) and a sensor element/actuator element (4) arranged on a second surface, located opposite of the first surface. A metal structure (6) is embedded in a dielectric (5, 5a...5c) of the substrate (2) and connects the sensor element/actuator element (4) to the contact surfaces (3). The metal structure (6) and the dielectric (5, 5a...5c) are designed such that due to the spring constant that is formed by the metal structure (6) and the dielectric (5, 5a...5c), a transmission of mechanical stresses from the contact surfaces (3) to the sensor element (4) is effectively reduced.
Abstract:
A semiconductor package has a capacitor die and a packaging substrate. The capacitor die is coupled to circuitry on a front or back side of a die coupled to the packaging substrate for providing decoupling capacitance. In one example, the capacitor die is coupled to a land side of the packaging substrate in an area depopulated of a packaging array and adjacent to the packaging array. In another example, the capacitor die may be stacked on the die and coupled through wire bonds to circuitry on the die. The capacitor die reduces impedance of the integrated circuit allowing operation at higher frequencies.
Abstract:
The present invention provides an electronic assembly 400 and a method for its manufacture 800, 900, 1000 1200, 1400, 1500, 1600, 1700. The assembly 400 uses no solder. Components 406, or component packages 402, 802, 804, 806 with I/O leads 412 are placed 800 onto a planar substrate 808. The assembly is encapsulated 900 with electrically insulating material 908 with vias 420, 1002 formed or drilled 1000 through the substrate 808 to the components' leads 412. Then the assembly is plated 1200 and the encapsulation and drilling process 1500 repeated to build up desired layers 422, 1502, 1702. Assemblies may be mated 1800. Within the mated assemblies, items may be inserted including pins 2202a, 2202b, and 2202c, mezzanine interconnection devices 2204, heat spreaders 2402, and combination heat spreaders and heat sinks 2602. Edge card connectors 2802 may be attached to the mated assemblies.
Abstract:
Microelectronic devices, stacked microelectronic devices, and methods for manufacturing microelectronic devices are described herein. In one embodiment, a set of stacked microelectronic devices includes (a) a first microelectronic die having a first side and a second side opposite the first side, (b) a first substrate attached to the first side of the first microelectronic die and electrically coupled to the first microelectronic die, (c) a second substrate attached to the second side of the first microelectronic die, (d) a plurality of electrical couplers attached to the second substrate, (e) a third substrate coupled to the electrical couplers, and (f) a second microelectronic die attached to the third substrate. The electrical couplers are positioned such that at least some of the electrical couplers are inboard the first microelectronic die.
Abstract:
Microelectronic devices and methods for manufacturing microelectronic devices are disclosed herein. In one embodiment, a method for manufacturing microelectronic devices includes forming a stand-off layer over a plurality of microelectronic dies on a microfeature workpiece, removing selected portions of the stand-off layer to form a plurality of stand-offs on corresponding dies, cutting the workpiece to singulate the dies, attaching a first singulated die to a support member, and coupling a second die to the stand-off on the first singulated die.