Abstract:
The present patent application relates to a production process of printed circuits on which electronic components without leading wire situated on the opposite side with respect to the circuit printed side are soldered. In particular, the said process provides for drilling the support (10), rolling it with a layer of conductive material (20) on only one (10a) of the two sides (10a and 10b) and making the circuits on the said side (10a).
Abstract:
In order to easily inject underfill resin and perform molding with reliability, groove sections are formed on a surface of a circuit board such that the ends of the groove sections extend to semiconductor elements. Low-viscosity underfill resin applied dropwise is guided by the groove sections and flows between the circuit board and the semiconductor elements. The underfill resin hardly expands to regions outside the semiconductor elements.
Abstract:
The present invention is to provide a printed wiring board which can certainly prevent damage of conductive pattern caused by the terminal. The printed wiring board has a board, a conductive pattern, a through-hole and a non-conductive area. A lead wire of resistance mounted on the printed wiring board is inserted into the through-hole 4. The lead wire projects from a surface of the board, and is bent close to the surface. The non-conductive area is formed into a fan-shaped shape enlarging toward a tip of the lead wire from a center of the through-hole. Since the bent lead wire is arranged on the non-conductive area, the non-conductive area can prevent damage of the conductive pattern which is caused by touching the lead wire to the conductive pattern.
Abstract:
A high power amplifier that has a high heat dissipation effect and is produced at low cost, a wireless transmitter and a wireless transceiver with the high power amplifier and a method for mounting a high power amplifier are provided. The high power amplifier comprises a transistor with lead wires extending from both side surfaces of a mold provided on a heat dissipation member to the outside, a double-sided wiring board of which the heat dissipation member is inserted in an opening of the double-sided wiring board and a wiring pattern on one surface of the double-sided wiring board is electrically connected to the lead wires, and a case for accommodating the double-sided wiring board. Further, the high power amplifier comprises a plate of which one main surface is in contact with an inner wall of the case and the other main surface is connected to the heat dissipation member and a wiring pattern on the other main surface of the double-sided wiring board.
Abstract:
A card manufacturing technique and the resulting card are provided. The card has a ground and/or power layer (112) extending to the edges of a circuit board for electrostatic discharge protection but also has gaps (112a) at the edge of the ground and/or power layer (112) to avoid short circuiting with conductive segments (160) of another layer deformed when the card is trimmed during manufacture.
Abstract:
A mounting region (S) is provided at an approximately center of one surface of an insulating layer (1). A conductive trace (2) is formed so as to outwardly extend from inside of the mounting region. A cover insulating layer (4) is formed in a periphery of the mounting region so as to cover the conductive trace. A terminal (21) of the conductive trace is arranged in the mounting region, and a bump (5a) of an electronic component (5) is bonded to the terminal. A metal layer (3) made of copper, for example, is provided on the other surface of the insulating layer. A pair of slits is formed in the metal layer such that a region being opposite to the electronic component is sandwiched therebetween. Each slit is formed so as not to divide the metal layer into a plurality of regions.
Abstract:
A wired circuit board having terminals that can provide reliable placement of molten metals on the terminals, so as to connect between the terminals and the external terminals with a high degree of precision. An insulating base layer (3) is formed on a supporting board (2), and a conductive pattern (4) is formed on the insulating base layer (3) so that a number of lines of wire (4a,4b,4c,4d) magnetic head connecting terminals (7), and external connecting terminals (8) are integrally formed and also first through holes (9) are formed in the external connecting terminals (8). Thereafter, after an insulating cover layer (10) is formed, third through holes (20) and second through holes (19) are formed in the supporting board (2) and in the insulating base layer (3), respectively, to communicate with the first through holes (9). This can provide the result that when the external connecting terminals (8) are connected to the external terminals (23), the connection can be performed while confirming the placement of the solder balls (21) by means of the respective through holes.
Abstract:
A method of producing a printed wiring board (3) comprising a mounting recess portion (1) for mounting an electronic part, a conductor pattern (7), and a heat-sink plate (6) arranged at the bottom of the mounting recess portion (1), characterized in that a conductor pattern (7) is formed on an insulating substrate (5); a heat-sink plate (6) is adhered to a lower face of a portion of the insulating substrate (5) forming the mounting recess portion; and a laser beam (2) is irradiated to an upper face of the portion (10) forming the mounting recess portion to form a mounting recess portion (1).
Abstract:
A printed wiring board (802) comprising an insulating substrate (806), a conductor pattern formed on a surface of the insulating substrate (806), a solder filling hole (801) passing through the insulating substrate (806) and arriving at an upper surface of the conductor pattern (851) and a solder (807) filled in the solder filling hole (801), characterized in that the insulating substrate (806) includes fibers (861) therein, and end portions (863) of the fibers (861) protrude from a wall face (810) of the solder filling hole (801) and encroach into the solder (807).