Abstract:
Provided are metal particles for an adhesive paste, a solder paste composition including the same, and a method of preparing the metal particles for an adhesive paste. The metal particles for an adhesive paste may include a core including one or more metal materials; and a shell arranged on part or an entirety of the core and including one or more metal materials. The metal material of the core may have a melting point higher than that of the metal material of the shell. An intermetallic compound is capable of being formed between the metal material of the core and the metal material of the shell. A ratio (D90/D10) of the 90% cumulative mass particle size distribution (D90 size) to the 10% cumulative mass particle size distribution (D10 size) in a particle size distribution of the metal particles may be 1.22 or less.
Abstract:
Provided are anisotropic conductive materials, electronic devices including anisotropic conductive materials, and/or methods of manufacturing the electronic devices. An anisotropic conductive material may include a plurality of particles in a matrix material layer. At least some of the particles may include a core portion and a shell portion covering the core portion. The core portion may include a conductive material that is in a liquid state at a temperature greater than 15° C. and less than or equal to about 110° C. or less. For example, the core portion may include at least one of a liquid metal, a low melting point solder, and a nanofiller. The shell portion may include an insulating material. A bonding portion formed by using the anisotropic conductive material may include the core portion outflowed from the particle and may further include an intermetallic compound.
Abstract:
Provided are metal particles for an adhesive paste, a solder paste composition including the same, and a method of preparing the metal particles for an adhesive paste. The metal particles for an adhesive paste may include a core including one or more metal materials; and a shell arranged on part or an entirety of the core and including one or more metal materials. The metal material of the core may have a melting point higher than that of the metal material of the shell. An intermetallic compound is capable of being formed between the metal material of the core and the metal material of the shell. A ratio (D90/D10) of the 90% cumulative mass particle size distribution (D90 size) to the 10% cumulative mass particle size distribution (D10 size) in a particle size distribution of the metal particles may be 1.22 or less.
Abstract:
Provided are a hybrid bonding structure, a solder paste composition, a semiconductor device, and a method of manufacturing the semiconductor device. The hybrid bonding structure includes a solder ball and a solder paste bonded to the solder ball. The solder paste includes a transient liquid phase. The transient liquid phase includes a core and a shell on a surface of the core. A melting point of the shell may be lower than a melting point of the core. The core and the shell are configured to form an intermetallic compound in response to the transient liquid phase at least partially being at a temperature that is within a temperature range of about 20° C. to about 190° C.
Abstract:
Provided is a metal particle for adhesive paste. The metal particle may include a core including at least one metal; and a shell on at least one surface of the core and including at least one metal and nanoparticles. The metal particle may be a transient liquid phase particle and the at least one metal of the core may have a higher melting point than a melting point of the at least one metal of the shell. In addition, provided are a method of preparing the metal particle for adhesive paste, a composite bonding structure formed from the metal particle for adhesive paste, and a semiconductor device including the composite bonding structure.
Abstract:
A hybrid bonding structure and a semiconductor including the hybrid bonding structure are provided. The hybrid bonding structure includes a solder ball and a solder paste bonded to the solder ball. The solder paste may include solder particles including at least one of In, Zn, SnBiAg alloy, or SnBi alloy, and ceramic particles. The solder paste may include a flux. The solder particles may include Sn(42.0 wt %)-Ag(0.4 wt %)-Bi(57.5−X) wt %, and the ceramic particles include CeO2(X) wt %, where 0.05≤X≤0.1.
Abstract:
Provided are a paste material, a method of forming the paste material, a wiring member formed from the paste material, and an electronic device including the wiring member. The paste material may include a plurality of liquid metal particles and a polymer binder. The paste material may further include a plurality of nanofillers. At least some of the plurality of nanofillers may each have an aspect ratio equal to or greater than about 3. A content of the plurality of liquid metal particles may be greater than a content of the polymer binder and may be greater than a content of the plurality of nanofillers. The wiring member may be formed by using the paste material, and the wiring member may be used in various electronic devices.
Abstract:
A semiconductor device includes a base substrate and a semiconductor chip on the base substrate, the semiconductor chip including a first layer structure and a second layer structure opposite to the first layer structure, at least one of the first and second layer structures including a semiconductor device portion, and a bonding structure between the first layer structure and the second layer structure, the bonding structure including a silver-tin (Ag—Sn) compound and a nickel-tin (Ni—Sn) compound.