摘要:
A method of fabricating a memory cell including forming nanodots over a first dielectric layer and forming a second dielectric layer over the nanodots, where the second dielectric layer encases the nanodots. In addition, an intergate dielectric layer is formed over the second dielectric layer. To form sidewalls of the memory cell, a portion of the intergate dielectric layer and a portion of the second dielectric layer are removed with a dry etch, where the sidewalls include a location where a nanodot has been deposited. A spacing layer is formed over the sidewalls to cover the location where a nanodot has been deposited and the remaining portion of the second dielectric layer and the nanodots can be removed with an isotropic etch selective to the second dielectric layer.
摘要:
A pattern having exceptionally small features is printed on a partially fabricated integrated circuit during integrated circuit fabrication. The pattern is printed using an array of probes, each probe having: 1) a photocatalytic nanodot at its tip; and 2) an individually controlled light source. The surface of the partially fabricated integrated circuit comprises a photochemically active species. The active species undergoes a chemical change when contacted by the nanodot, when the nanodot is illuminated by light. To print a pattern, each probe raster-scans its associated nanodot across the surface of the partially fabricated integrated circuit. When the nanodot reaches a desired location, the nanodot is illuminated by the light source, catalyzing a change in the reactive species and, thus, printing at that location. Subsequently, reacted or unreacted species are selectively removed, thereby forming a mask pattern over the partially fabricated integrated circuit. The minimum size of the features in the pattern is determined by the size of the nanodot and can be very small, e.g., having critical dimensions of about 20 nm or less.
摘要:
A hard mask comprising boron-doped amorphous carbon, and a method for forming the hard mask, provides improved resistance to etches of a variety of materials compared with previous amorphous carbon hard mask layers.
摘要:
The invention comprises methods of forming a conductive contact to a source/drain region of a field effect transistor, and methods of forming local interconnects. In one implementation, a method of forming a conductive contact to a source/drain region of a field effect transistor includes providing gate dielectric material intermediate a transistor gate and a channel region of a field effect transistor. At least some of the gate dielectric material extends to be received over at least one source/drain region of the field effect transistor. The gate dielectric material received over the one source/drain region is exposed to conditions effective to change it from being electrically insulative to being electrically conductive and in conductive contact with the one source/drain region. Other aspects and implementations are contemplated.
摘要:
A method of forming a thin film transistor relative to a substrate includes, a) providing a thin film transistor layer of polycrystalline material on a substrate, the polycrystalline material comprising grain boundaries; b) providing a fluorine containing layer adjacent the polycrystalline thin film layer; c) annealing the fluorine containing layer at a temperature and for a time period which in combination are effective to drive fluorine from the fluorine containing layer into the polycrystalline thin film layer and incorporate fluorine within the grain boundaries to passivate said grain boundaries; and d) providing a transistor gate operatively adjacent the thin film transistor layer. The thin film transistor can be fabricated to be bottom gated or top gated. A buffering layer can be provided intermediate the thin film transistor layer and the fluorine containing layer, with the buffering layer being transmissive of fluorine from the fluorine containing layer during the annealing. Preferably, the annealing temperature is both sufficiently high to drive fluorine from the fluorine containing layer into the polycrystalline thin film layer and incorporate fluorine within the grain boundaries to passivate said grain boundaries, but sufficiently low to prevent chemical reaction of the fluorine containing layer with the polycrystalline thin film layer.
摘要:
The invention includes methods of forming particle-containing materials, and also includes semiconductor constructions comprising particle-containing materials. One aspect of the invention includes a method in which a first monolayer is formed across at least a portion of a semiconductor substrate, particles are adhered to the first monolayer, and a second monolayer is formed over the particles. Another aspect of the invention includes a construction containing a semiconductor substrate and a particle-impregnated conductive material over at least a portion of the semiconductor substrate. The particle-impregnated conductive material can include tungsten-containing particles within a layer which includes tantalum or tungsten.
摘要:
The invention includes methods of forming hafnium-containing materials, such as, for example, hafnium oxide. In one aspect, a semiconductor substrate is provided, and first reaction conditions are utilized to form hafnium-containing seed material in a desired crystalline phase and orientation over the substrate. Subsequently, second reaction conditions are utilized to grow second hafnium-containing material over the seed material. The second hafnium-containing material is in a crystalline phase and/or orientation different from the crystalline phase and orientation of the hafnium-containing seed material. The second hafnium-containing material can be, for example, in an amorphous phase. The seed material is then utilized to induce a desired crystalline phase and orientation in the second hafnium-containing material. The invention also includes capacitor constructions utilizing hafnium-containing materials, and circuit assemblies comprising the capacitor constructions.
摘要:
Some embodiments include methods for treating surfaces. Beads and/or other insolubles may be dispersed within a liquid carrier to form a dispersion. A transfer layer may be formed across a surface. The dispersion may be directed toward the transfer layer, and the insolubles may impact the transfer layer. The impacting may generate force in the transfer layer, and such force may be transferred through the transfer layer to the surface. The surface may be a surface of a semiconductor substrate, and the force may be utilized to sweep contaminants from the semiconductor substrate surface. The transfer layer may be a liquid, and in some embodiments may be a cleaning solution.
摘要:
A deposition method includes positioning a substrate within a deposition chamber defined at least in part by chamber walls. At least one of the chamber walls comprises a chamber surface having a plurality of purge gas inlets to the chamber therein. A process gas is provided over the substrate effective to deposit a layer onto the substrate. During such providing, a material adheres to the chamber surface. Reactive purge gas is emitted to the deposition chamber from the purge gas inlets effective to form a reactive gas curtain over the chamber surface and away from the substrate, with such reactive gas reacting with such adhering material. Further implementations are contemplated.
摘要:
Floating-gate memory cells having a floating gate with a conductive portion and a dielectric portion facilitate increased levels of charge trapping sites within the floating gate. The conductive portion includes a continuous component providing bulk conductivity to the floating gate. The dielectric portion is discontinuous within the conductive portion and may include islands of dielectric material and/or one or more contiguous layers of dielectric material having discontinuities.