Abstract:
A coherent material is formed on a substrate (10) by providing a precursor suspension (14) in which particulates are suspended in a carrier fluid, and directing the precursor suspension (14) at the substrate (10) from a first source (12). Generally contemporaneously with application of the deposited precursor suspension (14) to the surface, hot gases, e.g. hot gases produced by a flame (16), are directed at the substrate (10) from a remote second source (18) to fuse the particulates into the coherent material.
Abstract:
An improvement in the photochemical vapor deposition apparatus for the preparation of a functional deposited film on a substrate by exciting and decomposing, or polymerizing a raw material as by way of a photochemical reaction, which comprises a reaction chamber with a raw material gas introducing means and an exhaust means, a radiant light transmissive window and a means to supply a light energy through the light transmissive window to the raw material gas introduced into the reaction space of the reaction chamber. The improvement comprises providing the above apparatus with a means to irradiate an infrared energy ray containing a wavelength having a vibrational absorption power for the raw material gas molecule concurrently with the irradiation of light energy.The improved photochemical vapor deposition apparatus enables one to stably and repeatedly prepare a desired functional deposited film of high quality and having a wealth of practically applicable characeristics at an improved film deposition rate without foreign matter resulting from the raw material gas being deposited on the inner face of the light transmissive window.
Abstract:
A method is shown for reducing the degrading effect of heat upon an elastomeric component used in the engine compartment of a vehicle. The elastomeric component is first formed into the desired shape and then sprayed with a heat resistant, heat reflecting paint to create a reflective surface on the component which reduces the effect of radiant heat present in the surrounding environment and improves the life expectancy of the component.
Abstract:
A silicone film is formed by drying a solution coated on a substrate at a temperature below 150.degree. C. to form a silicone film on the substrate, treating the silicone film in an oxygen plasma, and heating the silicone film treated in the plasma at a temperature of 150.degree. C. or higher.
Abstract:
Methods for forming a coated digitally manufactured part include forming an article by a digital manufacturing method; coating a surface of the article with a reactive silicon-containing precursor polymer; and treating the polymer to form a silica-containing coating, thereby forming the coated digitally manufactured part. An article includes a digitally manufactured part having surface striations; and a coating encapsulating the digitally manufactured part and comprising silica. An article includes a digitally manufactured part (i) formed by selective lase sintering, (ii) comprising a surface defined by coalesced particles, and (iii) having a surface roughness Ra of at least 0.1 microns; and a coating encapsulating the part and comprising silica. A composition comprising polysilazane is described.
Abstract:
The present disclosure provides a composite coating and a method for fabricating the composite coating. The composite coating comprises a polymer layer, a metal interlayer and an amorphous metal coating. The polymer layer is formed on a substrate and acts as a diffusion barrier layer, which is thick and dense enough to prevent the corrosive substances from penetrating into the substrate. The metal interlayer is formed between the polymer layer and the amorphous metal coating for improving the adhesion of the amorphous metal coating to the substrate.
Abstract:
Various examples are related to template-free methodologies to obtain “semi-regular” micro/nano-textures utilizing ribbing instability behavior in viscoelastic polymers. The methodologies offer low manufacturing cost and scalability for real-world applications. In one example, a method includes forming a viscoelastic material coating and forming micro-scale and/or nano-scale 3D features on a surface of the viscoelastic material coating. The micro-scale and/or nano-scale 3D features can be formed under shearing stress using a roll-to-roll process without a template. The texture periodicity and height in the polymer coat film can be adjusted through the roll coating process parameters and/or the polymer composite behavior.
Abstract:
The present invention provides a solvent-free process for producing foil with a functional coating containing an active material and a meltable polymer, the foil with a functional coating and its use as an electrode foil, electrolyte in solid-state batteries or separator for electrochemical storage. The process comprises scattering a dry powder mixture onto a foil, melting the dry powder mixture, and calendering the foil covered with the molten powder.
Abstract:
Systems for depositing coatings onto surfaces of molds and other articles are generally provided. In some embodiments, a system is adapted and arranged to cause gaseous species to flow parallel to a filament array. In some embodiments, a system comprises one or more mold supports that are translatable.
Abstract:
A flexible band for a medical headgear comprises an inner surface, an opposite outer surface, and a non-stretch central portion having a friction pad disposed on the inner surface. The friction pad is formed from a grip or tacky material and is disposed at least partially between the inner surface and the outer surface of the non-stretch central portion in a solidified state of the friction pad.