摘要:
A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.
摘要:
Methods of electroplating metal on a substrate while controlling azimuthal uniformity, include, in one aspect, providing the substrate to the electroplating apparatus configured for rotating the substrate during electroplating, and electroplating the metal on the substrate while rotating the substrate relative to a shield such that a selected portion of the substrate at a selected azimuthal position dwells in a shielded area for a different amount of time than a second portion of the substrate having the same average arc length and the same average radial position and residing at a different angular (azimuthal) position. For example, a semiconductor wafer substrate can be rotated during electroplating slower or faster, when the selected portion of the substrate passes through the shielded area.
摘要:
Disclosed herein are electroplating systems for electroplating nickel onto a semiconductor substrate having an electroplating cell for holding an electrolyte solution during electroplating which includes a cathode chamber and an anode chamber configured to hold a nickel anode, and having an oxygen removal device arranged to reduce oxygen concentration in the electrolyte solution as it is flowed to the anode chamber during electroplating and during idle times when the system is not electroplating. Also disclosed herein are methods of electroplating nickel onto a substrate in an electroplating cell having anode and cathode chambers, which include reducing the oxygen concentration in an electrolyte solution, flowing the electrolyte solution into the anode chamber and contacting a nickel anode therein, and electroplating nickel from the electrolyte solution onto a substrate in the cathode chamber, wherein the electrolyte solution in the cathode chamber is maintained at a pH of between about 3.5 and 4.5.
摘要:
Al—Mnx/Al—Mny multilayers with a wide range of structures ranging from microcrystalline to nanocrystalline and amorphous were electrodeposited using a single bath method under galvanostatic control from room temperature ionic liquid. By varying the Mn composition by −1-3 at. % between layers, the grain sizes in one material can be systematically modulated between two values. For example, one specimen alternates between grain sizes of about 21 and 52 nm, in an alloy of average composition of 10.3 at. % Mn. Nanoindentation testing revealed multilayers with finer grains and higher Mn content exhibited better resistance to plastic deformation. Other alloy systems also are expected to be electrodeposited under similar circumstances.
摘要:
An electroplating reactor includes an electro-plating solution in a bath, a ring cathode in the bath and located to contact a workpiece such that only the front side of the workpiece is immersed in the solution, plural anodes immersed in the bath below the ring cathode, and plural anode voltage sources coupled to the plural anodes; plural thickness sensors at spatially separate locations on the back side of the workpiece with feedback control to the anode voltage sources.
摘要:
A mechanism is provided for forming a nanodevice. A reservoir is filled with a conductive fluid, and a membrane is formed to separate the reservoir in the nanodevice. The membrane includes an electrode layer having a tunneling junction formed therein. The membrane is formed to have a nanopore formed through one or more other layers of the membrane such that the nanopore is aligned with the tunneling junction of the electrode layer. The tunneling junction of the electrode layer is narrowed to a narrowed size by electroplating or electroless deposition. When a voltage is applied to the electrode layer, a tunneling current is generated by a base in the tunneling junction to be measured as a current signature for distinguishing the base. When an organic coating is formed on an inside surface of the tunneling junction, transient bonds are formed between the electrode layer and the base.
摘要:
An insulated metal substrate (IMS) for supporting a device comprises a metallic substrate having a ceramic coating formed at least in part by oxidation of a portion of the surface of the metallic substrate. The ceramic coating has a dielectric strength of greater than 50 KV mm−1 and a thermal conductivity of greater than 5 Wm−1K−1.
摘要:
In order to provide a coating facility for coating workpieces, which includes a dip tank, into which the workpieces are introducible in order to coat them, a current conversion system for providing a coating current, which is feedable through the dip tank to coat the workpieces, and an electrode, which is configured to be arranged in the dip tank and which is electrically connected to the current conversion system, which coating facility is configured to be flexibly and reliably operated, it is proposed that the current conversion system comprises a current conversion unit, which includes a power switch and an isolating transformer, the power switch being connectable on the input side to a supply current source and being connected on the output side to the isolating transformer and the isolating transformer being connected on the input side to the power switch and on the output side to an electrode.
摘要:
A plating pretreatment apparatus for a multi-cylinder block includes a plurality of cylinders that performs a plating pretreatment of a cylinder inner wall surface of each of the cylinders using an electrode disposed so as to oppose to the cylinder inner wall surface by sealing one end of the cylinder inner wall surface and introducing a treatment liquid to the cylinder inner wall surface. In such plating pretreatment apparatus, at least one of a power supply device that supplies electricity to the cylinder block and the electrode and a liquid feed pump that feeds the treatment liquid into a gap between the cylinder inner wall surface and the electrode is provided for each of the cylinders.
摘要:
In some method and apparatus disclosed herein, the profile of current delivered to the substrate provides a relatively uniform current density on the substrate surface during immersion. These methods include controlling the current density applied across a substrate's surface during immersion by dynamically controlling the current to account for the changing substrate surface area in contact with electrolyte during immersion. In some cases, current density pulses and/or steps are used during immersion, as well.