Abstract:
A power semiconductor package is disclosed with high inductance rating while exhibiting a reduced foot print. It has a bonded stack of power IC die at bottom, a power inductor at top and a circuit substrate, made of leadframe or printed circuit board, in the middle. The power inductor has a inductor core of closed magnetic loop. The circuit substrate has a first number of bottom half-coil forming conductive elements beneath the inductor core. A second number of top half-coil forming conductive elements, made of bond wires, three dimensionally formed interconnection plates or upper leadframe leads, are located atop the inductor core with both ends of each element connected to respective bottom half-coil forming conductive elements to jointly form an inductive coil enclosing the inductor core. A top encapsulant protectively encases the inductor core, the top half-coil forming conductive elements, the bottom half-coil forming conductive elements and the circuit substrate.
Abstract:
A semiconductor power device package having a lead frame-based integrated inductor is disclosed. The semiconductor power device package includes a lead frame having a plurality of leads, a inductor core attached to the lead frame such that a plurality of lead ends are exposed through a window formed in the inductor core, a plurality of bonding wires, ones of the plurality of bonding wires coupling each of the plurality of lead ends to adjacent leads about the inductor core to form the inductor, and a power integrated circuit coupled to the inductor. In alternative embodiments, a top lead frame couples each of the plurality of lead ends to adjacent leads about the inductor core by means of a connection chip.
Abstract:
This invention discloses semiconductor device that includes a top region and a bottom region with an intermediate region disposed between said top region and said bottom region with a controllable current path traversing through the intermediate region. The semiconductor device further includes a trench with padded with insulation layer on sidewalls extended from the top region through the intermediate region toward the bottom region wherein the trench includes randomly and substantially uniformly distributed nano-nodules as charge-islands in contact with a drain region below the trench for electrically coupling with the intermediate region for continuously and uniformly distributing a voltage drop through the current path.
Abstract:
This invention discloses bottom-source lateral diffusion MOS (BS-LDMOS) device. The device has a source region disposed laterally opposite a drain region near a top surface of a semiconductor substrate supporting a gate thereon between the source region and a drain region. The BS-LDMOS device further has a combined sinker-channel region disposed at a depth in the semiconductor substrate entirely below a body region disposed adjacent to the source region near the top surface wherein the combined sinker-channel region functioning as a buried source-body contact for electrically connecting the body region and the source region to a bottom of the substrate functioning as a source electrode. A drift region is disposed near the top surface under the gate and at a distance away from the source region and extending to and encompassing the drain region. The combined sinker-channel region extending below the drift region and the combined sinker-channel region that has a dopant-conductivity opposite to and compensating the drift region for reducing the source-drain capacitance.
Abstract:
An apparatus and method for enhanced transient blocking employing a transient blocking unit (TBU) that uses at least one depletion mode n-channel device interconnected with at least one depletion mode p-channel device. The interconnection is performed such that a transient alters a bias voltage Vp of the p-channel device and a bias voltage Vn of the n-channel device such that the p- and n-channel devices mutually switch off to block the transient. The apparatus has an enhancer circuit for applying an enhancement bias to a gate terminal of at least one of the depletion mode n-channel devices of the TBU to reduce a total resistance Rtot of the apparatus. Alternatively, the apparatus has an enhancement mode NMOS transistor and a TBU connected thereto to help provide an enhancement bias to a gate terminal of the enhancement mode NMOS.
Abstract translation:一种用于增强瞬态阻塞的装置和方法,其采用使用与至少一个耗尽型p沟道器件互连的至少一个耗尽型n沟道器件的瞬态阻塞单元(TBU)。 执行互连,使得瞬态改变p沟道器件的偏置电压V P和N沟道器件的偏置电压V N n N,使得p - 和n通道设备相互关闭以阻止瞬态。 该装置具有增强器电路,用于向TBU中的至少一个耗尽型n沟道器件的栅极端子施加增强偏置,以减小器件的总电阻R tht。 或者,该装置具有增强型NMOS晶体管和与其连接的TBU,以帮助向增强型NMOS的栅极端提供增强偏置。
Abstract:
This invention discloses bottom-source lateral diffusion MOS (BS-LDMOS) device. The device has a source region disposed laterally opposite a drain region near a top surface of a semiconductor substrate supporting a gate thereon between the source region and a drain region. The BS-LDMOS device further has a combined sinker-channel region disposed at a depth in the semiconductor substrate entirely below a body region disposed adjacent to the source region near the top surface wherein the combined sinker-channel region functioning as a buried source-body contact for electrically connecting the body region and the source region to a bottom of the substrate functioning as a source electrode. A drift region is disposed near the top surface under the gate and at a distance away from the source region and extending to and encompassing the drain region. The combined sinker-channel region extending below the drift region and the combined sinker-channel region that has a dopant-conductivity opposite to and compensating the drift region for reducing the source-drain capacitance.
Abstract:
A copper bonding compatible bond pad structure and associated method is disclosed. The device bond pad structure includes a buffering structure formed of regions of interconnect metal and regions of non-conductive passivation material, the buffering structure providing buffering of underlying layers and structures of the device.
Abstract:
This invention relates to achieving high breakdown voltage and low on-resistance in semiconductor devices that have top, intermediate and bottom regions with a controllable current path traversing any of these regions. The device has an insulating trench that is coextensive with the top and intermediate regions and girds these regions from at least one side and preferably from both or all sides. A series capacitive structure with a biased top element and a number of floating elements is disposed in the insulating trench, and the intermediate region is endowed with a capacitive property that is chosen to establish a capacitive interaction or coupling between the series capacitive structure and the intermediate region so that the breakdown voltage VBD is maximized and on-resistance is minimized. A second series capacitive structure disposed in a second insulating trench can be employed to terminate the device.
Abstract:
An apparatus and a method for uni-directional and bi-directional transient blocking. The uni-directional apparatus has a depletion mode n-channel device at its input and a normally closed relay, e.g., a micro-electro-mechanical (MEM) relay, interconnected with the depletion mode n-channel device and the input in such a way that at a predetermined current value the transient causes the normally closed relay to switch into an open state and apply a bias voltage Vn on the depletion mode n-channel device that is sufficiently high to switch it “off” thus block the transient. An analogous arrangement at the output taking advantage of the same or a second relay renders the apparatus bi-directional. The structure of the apparatus and the method of operation ensure a reliable and repeatable trip current Itrip and render the apparatus very robust and feasible for low-cost manufacture.
Abstract:
A TBU system that includes a TBU combined with control and monitoring features. For example, in one embodiment, TBU elements are combined with a status indication switch or indicator. In another embodiment, TBU elements are combined with event logging for over voltage conditions, over current conditions, including an indication of when the event occurred and an amount of energy that was let through.