Abstract:
One illustrative device disclosed herein includes a stepped conductive source/drain structure with a cavity defined therein, the cavity being located vertically above an active region, a non-conductive structure positioned in the cavity, a layer of insulating material positioned above the gate structure, the stepped conductive source/drain structure and the non-conductive structure, a gate contact opening defined in the layer of insulating material and a conductive gate contact positioned in the gate contact opening that is conductively coupled to the gate structure, wherein at least a portion of the conductive gate contact is positioned vertically above the non-conductive structure.
Abstract:
Methods to form multi Vt channels, including a single type of WF material, utilizing lower annealing temperatures and the resulting devices are disclosed. Embodiments include providing an interfacial-layer on a semiconductor substrate; forming a first high-k dielectric-layer on the interfacial-layer; forming a second high-k dielectric-layer and a first cap-layer, respectively, on the first high-k dielectric-layer; removing the second high-k dielectric and first cap layers in first and second regions; forming a second cap-layer on the first high-k dielectric-layer in the first and second regions and on the first cap-layer in a third region; performing an annealing process; removing the second cap-layer from all regions and the first cap-layer from the third region; forming a third high-k dielectric-layer over all regions; forming a work-function composition-layer and a barrier-layer on the third high-k dielectric-layer in all regions; removing the barrier-layer from the first region; and forming a gate electrode over all regions.
Abstract:
At least one method, apparatus and system are disclosed for forming a fin field effect transistor (finFET) while reducing oxidization and fin critical dimension loss. A plurality of fins of a transistor are formed. A hard mask layer is formed on top of the fins. A first liner layer is formed over the fins and the hard mask layer. A partial deposition process is performed for depositing a first insulation material in a first portion of a channel between the fins. A second liner layer is formed above the fins, the first insulation material, and the channel. A second insulation material is deposited above the second liner layer. A fin reveal process is performed for removing the second insulation material to a predetermined height. An etch process is performed for removing the hard mask layer and the first and second liner layers above the predetermined height.
Abstract:
An integrated circuit product includes two laterally spaced-apart transistors, wherein each of the two laterally spaced-apart transistors includes a gate structure, a gate cap layer positioned above the gate structure, and a sidewall spacer positioned adjacent to sidewalls of the gate structure. A source/drain region is positioned between the two laterally spaced-apart transistors, and a conformal etch stop layer is positioned on and in contact with an upper surface of the source/drain region and on and in contact with a sidewall surface of the sidewall spacer of each of the two laterally spaced-apart transistors. A self-aligned conductive contact extends through an opening in the conformal etch stop layer and is conductively coupled to the source/drain region.
Abstract:
One method disclosed includes, among other things, forming a structure comprised of an island of a first insulating material positioned between the gate structures above the source/drain region and under a masking layer feature of a patterned masking layer, forming a liner layer that contacts the island of insulating material and the masking layer feature, selectively removing the masking layer feature to thereby form an initial opening that is defined by the liner layer, performing at least one isotropic etching process through the initial opening to remove the island of first insulating material and thereby define a contact opening that exposes the source/drain region, and forming a conductive contact structure in the contact opening that is conductively coupled to the source/drain region.
Abstract:
A method includes forming first and second gate cavities so as to expose first and second portions of a semiconductor material. A gate insulation layer is formed in the first and second gate cavities. A first work function material layer is formed in the first gate cavity. A second work function material layer is formed in the second gate cavity. A first barrier layer is selectively formed above the first work function material layer and the gate insulation layer in the first gate cavity. A second barrier layer is formed above the first barrier layer in the first gate cavity and above the second work function material layer and the gate insulation layer in the second gate cavity. A conductive material is formed above the second barrier layer in the first and second gate cavities in the presence of a treatment species to define first and second gate electrode structures.
Abstract:
A method includes forming a plurality of fins above a substrate. At least one dielectric material is formed above and between the plurality of fins. A mask layer is formed above the dielectric material. The mask layer has an opening defined therein. A portion of the at least one dielectric material exposed by the opening is removed to expose top and sidewall surface portions of at least a subset of the fins. An etching process is performed to remove the portions of the fins in the subset exposed by removing the portion of the at least one dielectric material.
Abstract:
A method includes providing a semiconductor structure including a substrate that includes a material to be patterned. First and second mandrels are formed over the substrate using a common photolithography process that defines a position of the first mandrel relative to the substrate and a position of the second mandrel relative to the substrate. A first sidewall spacer is formed adjacent the first mandrel and a second sidewall spacer is formed adjacent the second mandrel. After the formation of the first and the second sidewall spacers, the first mandrel is removed. The second mandrel remains in the semiconductor structure. A first mask element is provided on the basis of the first sidewall spacer. A second mask element is provided on the basis of the second mandrel and the second sidewall spacer. The material to be patterned is patterned on the basis of the first and the second mask elements.
Abstract:
A method includes providing a semiconductor structure including a substrate that includes a material to be patterned. First and second mandrels are formed over the substrate using a common photolithography process that defines a position of the first mandrel relative to the substrate and a position of the second mandrel relative to the substrate. A first sidewall spacer is formed adjacent the first mandrel and a second sidewall spacer is formed adjacent the second mandrel. After the formation of the first and the second sidewall spacers, the first mandrel is removed. The second mandrel remains in the semiconductor structure. A first mask element is provided on the basis of the first sidewall spacer. A second mask element is provided on the basis of the second mandrel and the second sidewall spacer. The material to be patterned is patterned on the basis of the first and the second mask elements.
Abstract:
A method of contact formation and resulting structure is disclosed. The method includes providing a starting semiconductor structure, the structure including a semiconductor substrate with fins coupled to the substrate, a bottom portion of the fins being surrounded by a first dielectric layer, dummy gates covering a portion of each of the fins, spacers and a cap for each dummy gate, and a lined trench between the gates extending to and exposing the first dielectric layer. The method further includes creating an epitaxy barrier of hard mask material between adjacent fins in the trench, creating N and P type epitaxial material on the fins adjacent opposite sides of the barrier, and creating sacrificial semiconductor epitaxy over the N and P type epitaxial material, such that subsequent removal thereof can be done selective to the N and P type of epitaxial material. The resulting structure has replacement (conductive) gates, conductive material above the N and P type epitaxy, and a contact to the conductive material for each of N and P type epitaxy.