Abstract:
A plasma immersion ion implantation process for implanting a selected species at a desired ion implantation depth profile in a workpiece is carried out in a reactor chamber with an ion shower grid that divides the chamber into an upper ion generation region and a lower process region, the ion shower grid having plural elongate orifices oriented in a non-parallel direction relative to a surface plane of the ion shower grid. The process includes placing a workpiece in the process region, the workpiece having a workpiece surface generally facing the surface plane of the ion shower grid, and furnishing the selected species into the ion generation region in gaseous, molecular or atomic form and evacuating the process region at an evacuation rate sufficient to create a pressure drop across the ion shower grid from the ion generation region to the process region of about a factor of at least four. The process further includes applying plasma source power to generate a plasma of the selected species in the ion generation region, and applying a grid potential to the ion shower grid to create a flux of ions from the plasma through the grid and into the process region. The process also includes applying a sufficient bias voltage to at least one of: (a) the workpiece, (b) the grid, relative to at least one of: (a) the workpiece, (b) a plasma in the ion generation region, (c) a surface of the chamber, to accelerate the flux of ions to a kinetic energy distribution generally corresponding to the desired ion implantation depth profile in the workpiece.
Abstract:
A chemical vapor deposition process is carried out in a reactor chamber having a set of plural parallel ion shower grids that divide the chamber into an upper ion generation region and a lower process region, each of the ion shower grids having plural orifices in mutual registration from grid to grid, each orifice being oriented in a non-parallel direction relative to a surface plane of the respective ion shower grid. A workpiece is placed in the process region, so that a workpiece surface of the workpiece is generally facing a surface plane of the nearest one of the ion shower grids, and a gas mixture comprising a deposition precursor species is furnished into the ion generation region. The process region is evacuated at an evacuation rate sufficient to create a pressure drop across the plural ion shower grids between the ion generation and process regions whereby the pressure in the ion generation region is several times the pressure in the process region. The process further includes applying plasma source power to generate a plasma of the deposition precursor species in the ion generation region and applying successive grid potentials to successive ones of the grids.
Abstract:
An integrated microelectronic circuit has a multi-layer interconnect structure overlying the transistors consisting of stacked metal pattern layers and insulating layers separating adjacent ones of said metal pattern layers. Each of the insulating layers is a dielectric material with plural gas bubbles distributed within the volume of the dielectric material to reduce the dielectric constant of the material, the gas bubbles being formed by ion implantation of a gaseous species into the dielectric material.
Abstract:
A plasma reactor includes a chamber body having an interior space that provides a plasma chamber, a gas distributor, a pump coupled to the plasma chamber, a workpiece support to hold a workpiece, an intra-chamber electrode assembly comprising a plurality of filaments extending laterally through the plasma chamber, each filament including a conductor surrounded by a cylindrical insulating shell, the plurality of filaments including a first multiplicity of filaments and a second multiplicity of filaments arranged in an alternating pattern with the first multiplicity of filaments, a first bus coupled to the first multiplicity of filaments and a second bus coupled to the second multiplicity of filaments, an RF power source to apply RF signal the intra-chamber electrode assembly, and at least one RF switch configured to controllably electrically couple and decouple the first bus from one of i) ground, ii) the RF power source, or iii) the second bus.
Abstract:
A plasma reactor includes a chamber body having an interior space that provides a plasma chamber, a gas distributor to deliver a processing gas to the plasma chamber, a pump coupled to the plasma chamber to evacuate the chamber, a workpiece support to hold a workpiece, and an intra-chamber electrode assembly that includes a plurality of filaments extending laterally through the plasma chamber between a ceiling of the plasma chamber and the workpiece support. Each filament including a conductor surrounded by a cylindrical insulating shell. The plurality of filaments includes a first multiplicity of filaments and a second multiplicity of filaments arranged in an alternating pattern with the first multiplicity of filaments. An RF power source is configured to apply a first RF input signal to the first multiplicity of filaments.
Abstract:
Embodiments include devices and methods for detecting particles in a wafer processing tool. In an embodiment, a particle monitoring device having a wafer form factor includes several micro sensors capable of operating in all pressure regimes, e.g., under vacuum conditions. The particle monitoring device may include a clock to output a time value when a parameter of a micro sensor changes in response to receiving a particle within a chamber of the wafer processing tool. A location of the micro sensor or the time value may be used to determine a source of the particle. Other embodiments are also described and claimed.
Abstract:
Embodiments of impedance matching networks are provided herein. In some embodiments, an impedance matching network may include a coaxial resonator having an inner and an outer conductor. A tuning capacitor may be provided for variably controlling a resonance frequency of the coaxial resonator. The tuning capacitor may be formed by a first tuning electrode and a second tuning electrode and an intervening dielectric, wherein the first tuning electrode is formed by a portion of the inner conductor. A load capacitor may be provided for variably coupling energy from the inner conductor to a load. The load capacitor may be formed by the inner conductor, an adjustable load electrode, and an intervening dielectric.
Abstract:
A plasma processing apparatus and method to control a temperature of a chamber component therein. A process chamber may include a temperature controlled chamber component and at least one remote heat transfer fluid loop comprising a first heat exchanger having a primary side in fluid communication with a heat sink or heat source, and a local heat transfer fluid loop placing the chamber component in fluid communication with a secondary side of the first heat exchanger. The local loop may be of significantly smaller fluid volume than the remote loop(s) and circulated to provide thermal load of uniform temperature. Temperature control of heat transfer fluid in the local loop and temperature control of the chamber component may be implemented with a cascaded control algorithm.
Abstract:
Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
Abstract:
Methods for processing a substrate are provided herein. In some embodiments, a method of etching a dielectric layer includes generating a plasma by pulsing a first RF source signal having a first duty cycle; applying a second RF bias signal having a second duty cycle to the plasma; applying a third RF bias signal having a third duty cycle to the plasma, wherein the first, second, and third signals are synchronized; adjusting a phase variance between the first RF source signal and at least one of the second or third RF bias signals to control at least one of plasma ion density non-uniformity in the plasma or charge build-up on the dielectric layer; and etching the dielectric layer with the plasma.