Abstract:
Systems and methods for simultaneously partitioning a plurality of via structures into electrically isolated portions by using plating resist within a PCB stackup are disclosed. Such via structures are made by selectively depositing plating resist in one or more locations in a sub-composite structure. A plurality of sub-composite structures with plating resist deposited in varying locations are laminated to form a PCB stackup of a desired PCB design. Through-holes are drilled through the PCB stackup through conductive layers, dielectric layers and through the plating resist. Thus, the PCB panel has multiple through-holes that can then be plated simultaneously by placing the PCB panel into a seed bath, followed by immersion in an electroless copper bath. Such partitioned vias increase wiring density and limit stub formation in via structures. Such partitioned vias allow a plurality of electrical signals to traverse each electrically isolated portion without interference from each other.
Abstract:
In some embodiments, an apparatus includes a printed circuit board substrate, a copper signal line disposed on the printed circuit board substrate, and a nonlinear transmission structure coupled to the copper signal line, wherein the nonlinear transmission structure is configured to sharpen a wavefront of a high speed signal pulse on the copper signal line. In some embodiments, the nonlinear transmission structure may include a voltage dependent dielectric layer on the printed circuit board substrate. In some embodiments, the voltage dependent dielectric layer may include a plurality of varactors positioned at a receiving end of the signal line.
Abstract:
A composition of voltage switchable dielectric (VSD) material that utilizes semi-conductive or conductive materials that have a relatively high aspect ratio for purpose of enhancing mechanical and electrical characteristics of the VSD material.
Abstract:
The invention provides a process for preparing an overvoltage protection material comprising: (i) preparing a mixture comprising a polymer binder precursor and a conductive material; and (ii) heating the mixture to cause reaction of the polymer binder precursor and generate a polymer matrix having conductive material dispersed therein, wherein the polymer binder precursor is chosen such that substantially no solvent is generated during the reaction.
Abstract:
A voltage variable material (“VVM”) including an insulative binder that is formulated to intrinsically adhere to conductive and non-conductive surfaces is provided. The binder and thus the VVM is self-curable and applicable in a spreadable form that dries before use. The binder eliminates the need to place the VVM in a separate device or to provide separate printed circuit board pads on which to electrically connect the VVM. The binder and thus the VVM can be directly applied to many different types of substrates, such as a rigid FR-4 laminate, a polyimide, a polymer or a multilayer PCB via a process such as screen or stencil printing. In one embodiment, the VVM includes two types of conductive particles, one with a core and one without a core. The VVM can also have core-shell type semiconductive particles.
Abstract:
An improved electrical circuit that includes an embedded electrical component and an embedded voltage variable material (“VVM”) is provided. In one embodiment, the embedded VVM is provided as a voltage variable substrate, which is used in combination with an embedded electrical component, such as an embedded resistive material or an embedded capacitive material.
Abstract:
Devices capable of protecting electronic components during the occurrence of a disturbance event using printed circuit board manufacturing techniques. A three (3) layer structure is formed comprising a polymer-based formulation sandwiched between two electrode layers. The devices can be manufactured in panel form providing high quantities of devices which can be removed from the panel and applied directly to the component to be protected. Desired patterns can be formed on either one of the electrode layers by photo-etch techniques thereby providing a process that can be tailored to a large number of applications.
Abstract:
A device includes a substrate comprises a voltage switchable dielectric material. A current carrying formation is formed on a plurality of selected sections of a surface of the substrate. Another device includes a substrate comprising a voltage switchable dielectric material. The substrate includes a first surface and a second surface opposite to the first surface. A vias extends between the first surface and the second surface of the substrate. A current carrying formation is formed on a plurality of selected sections of the first and second surfaces, as well as on a surface of the substrate defining the vias to extend an electrical connection from the first surface to the second surface.
Abstract:
An arrangement of voltage variable materials for the protection of electrical components from electrical overstress (EOS) transients. A device having a plurality of electrical leads, a ground plane and a layer of voltage variable material. The voltage variable material physically bonds the plurality of electrical leads to one another as well as provides an electrical connection between the plurality of electrical leads and the ground plane. A die having a circuit integrated therein is attached to the ground plane. Conductive members electrically connect the plurality of electrical leads to the integrated circuit. At normal operating voltages, the voltage variable material has a high resistance, thus channeling current from the electrical leads to the integrated circuit via the conductive members. In response to a high voltage EOS transient, the voltage variable material essentially instantaneously switches to a low resistance state, channeling the potentially harmful EOS transient to the ground plane and away from the integrated circuit.
Abstract:
The present invention provides a multifunction resistor having an improved voltage variable material (nullVVMnull). More specifically, the present invention provides a polymer VVM that has been formulated with a high percentage loading of conductive and/or semiconductive particles. A known length of the relatively conductive VVM is placed between adjacent electrodes to produce a desired Ohmic normal state resistance. When an electrostatic discharge event occurs, the VVM of the multifunctional resistor becomes highly conductive and dissipates the ESD threat. One application for this nullresistornull is the termination of a transmission line, which prevents unwanted reflections and distortion of high frequency signals.