-
公开(公告)号:US5965410A
公开(公告)日:1999-10-12
申请号:US977528
申请日:1997-11-25
IPC分类号: B01L3/00 , B01L7/00 , G01N27/447 , C12P19/34
CPC分类号: B01L3/5027 , B01L7/52 , G01N27/44791 , B01L2200/147 , B01L2300/0816 , B01L2300/0883 , B01L2300/1822 , B01L2300/1827 , B01L2300/1833 , B01L2300/1838 , B01L2400/0415 , B01L2400/0487 , Y10S366/03
摘要: A novel method and device for transporting and/or monitoring a fluid in a multi-port device 400, 800, 1000 used in a microfluidic system is provided. The multi-port device includes a substrate having a novel channel configuration. A first channel region 413 having a first port and a second port for transporting fluid therebetween is defined in the substrate. A second channel region 421 having a first port and a second port for applying electric current for heating fluid or for monitoring a fluid parameter therebetween is also defined in the substrate. In some embodiments, the first channel intersects 407 with the second channel. The heating or monitoring aspect of the invention can be used with a variety of biological reactions such as PCR, LCR, and others.
-
公开(公告)号:US5958203A
公开(公告)日:1999-09-28
申请号:US883638
申请日:1997-06-26
申请人: J. Wallace Parce , Michael R. Knapp
发明人: J. Wallace Parce , Michael R. Knapp
IPC分类号: G01N31/20 , B01F13/00 , B01J19/00 , B01L3/00 , B01L3/02 , F04B17/00 , F04B19/00 , G01N27/26 , G01N27/447 , G01N37/00 , H02N11/00
CPC分类号: B01F13/0071 , B01J19/0093 , B01L3/502715 , B01L3/50273 , B01L3/502784 , F04B17/00 , F04B19/006 , G01N27/44704 , G01N27/44743 , G01N27/44791 , H02N11/006 , B01F13/0084 , B01F13/0086 , B01J2219/00891 , B01L2200/027 , B01L2400/0415 , B01L2400/0418 , B01L2400/0421 , B01L3/021 , Y10S366/02 , Y10T436/113332 , Y10T436/2575
摘要: The present invention provides for techniques for transporting materials using electrokinetic forces through the channels of a microfluidic system. The subject materials are transported in regions of high ionic concentration, next to spacer material regions of high ionic concentration, which are separated by spacer material regions of low ionic concentration. Such arrangements allow the materials to remain localized for the transport transit time to avoid mixing of the materials. Using these techniques, an electropipettor which is compatible with the microfluidic system is created so that materials can be easily introduced into the microfluidic system. The present invention also compensates for electrophoretic bias as materials are transported through the channels of the microfluidic system by splitting a channel into portions with positive and negative surface charges and a third electrode between the two portions, or by diffusion of the electrophoresing materials after transport along a channel.
-
公开(公告)号:US5779868A
公开(公告)日:1998-07-14
申请号:US671986
申请日:1996-06-28
申请人: J. Wallace Parce , Michael R. Knapp
发明人: J. Wallace Parce , Michael R. Knapp
IPC分类号: B01F13/00 , B01J19/00 , B01L3/00 , B01L3/02 , F04B17/00 , F04B19/00 , G01N27/447 , H02N11/00 , G01N27/26
CPC分类号: B01F13/0071 , B01J19/0093 , B01L3/502715 , B01L3/50273 , B01L3/502784 , F04B17/00 , F04B19/006 , G01N27/44704 , G01N27/44743 , G01N27/44791 , H02N11/006 , B01F13/0084 , B01F13/0086 , B01L2200/027 , B01L2200/0673 , B01L2300/0816 , B01L2400/0415 , B01L3/021 , B01L3/502753
摘要: The present invention provides for techniques for transporting materials using electrokinetic forces through the channels of a microfluidic system. The materials are transported in slug regions of high ionic concentration, next to buffer material regions of high ionic concentration, which are separated by buffer material regions of low ionic concentration. Such arrangements allow the materials to remain localized for the transport transit time to avoid mixing of the materials. Using these techniques, an electropipettor which is compatible with the microfluidic system is created so that materials can be easily introduced into the microfluidic system. The present invention also compensates for electrophoretic bias as materials are transported through the channels of the microfluidic system by splitting a channel into portions with positive and negative surface charges and a third electrode between the two portions, or by diffusion of the electrophoresing materials after transport along a channel.
摘要翻译: 本发明提供了使用电动力通过微流体系统的通道输送材料的技术。 材料以高离子浓度的块状区域运输,靠近高离子浓度的缓冲材料区域,其由低离子浓度的缓冲材料区域分离。 这种布置允许材料在运输通过时间内保持局部化,以避免混合材料。 使用这些技术,产生与微流体系统相容的电吸移器,使得材料可以容易地引入到微流体系统中。 本发明还补偿电泳偏压,因为材料通过将通道分成具有正表面电荷和负表面电荷的部分,以及两部分之间的第三电极,或者通过在运输之后电泳材料的扩散而传输通过微流体系统的通道 一个频道
-
公开(公告)号:US09683994B2
公开(公告)日:2017-06-20
申请号:US13544006
申请日:2012-07-09
申请人: Andrea W. Chow , John C. Owicki , J. Wallace Parce
发明人: Andrea W. Chow , John C. Owicki , J. Wallace Parce
IPC分类号: G01N27/447 , G01N33/557 , B01L3/00 , G01N33/53 , B01L7/00
CPC分类号: G01N33/557 , B01L3/50273 , B01L3/502753 , B01L7/52 , B01L2200/10 , B01L2300/0816 , B01L2300/1822 , B01L2300/1833 , B01L2400/0415 , B01L2400/0421 , B01L2400/0487 , G01N27/44791 , G01N33/5306
摘要: The present invention provides novel methods for performing pulsed field mobility shift assays in microfluidic devices. In particular, the methods of the invention utilize differences between electrophoretic mobilities (e.g., as between reactants and products, especially in non-fluorogenic reactions) in order to separate the species and thus analyze the reaction.
-
公开(公告)号:US09101928B2
公开(公告)日:2015-08-11
申请号:US13015242
申请日:2011-01-27
申请人: Tammy Burd Mehta , Anne R. Kopf-Sill , J. Wallace Parce , Andrea W. Chow , Luc J. Bousse , Michael R. Knapp , Theo T. Nikiforov , Steve Gallagher
发明人: Tammy Burd Mehta , Anne R. Kopf-Sill , J. Wallace Parce , Andrea W. Chow , Luc J. Bousse , Michael R. Knapp , Theo T. Nikiforov , Steve Gallagher
IPC分类号: G01N35/00 , B01L3/00 , C07H21/02 , C07H21/04 , C12Q1/68 , B01F13/00 , C40B60/14 , G01N27/447
CPC分类号: C12Q1/6874 , B01F13/0059 , B01J2219/00317 , B01J2219/00459 , B01J2219/00468 , B01L3/5027 , B01L3/502715 , B01L3/502761 , B01L2200/0668 , B01L2400/0409 , B01L2400/0415 , B01L2400/043 , B01L2400/0487 , C07H21/02 , C07H21/04 , C12Q1/6869 , C40B60/14 , G01N27/44756 , G01N35/0098 , G01N2035/00574 , Y10T436/143333 , C12Q2565/629 , C12Q2535/101 , C12Q2563/173 , C12Q2525/186 , C12Q2527/125
摘要: An array of transportable particle sets is used in a microfluidic device for performing chemical reactions in the microfluidic device. The microfluidic device comprises a main channel and intersecting side channels, the main channel and side channels forming a plurality of intersections. The array of particle sets is disposed in the main channel, and the side channels are coupled to reagents. As the particle sets are transported through the intersections of the main channel and the side channels, reagents are flowed through the side channels into contact with each array member (or selected array members), thereby providing a plurality of chemical reactions in the microfluidic system.
摘要翻译: 在微流体装置中使用可移动颗粒组的阵列,用于在微流体装置中执行化学反应。 微流体装置包括主通道和相交的侧通道,主通道和侧通道形成多个交叉点。 颗粒组的阵列设置在主通道中,并且侧通道与试剂偶联。 当颗粒组通过主通道和侧通道的交叉点传输时,试剂通过侧通道流动与每个阵列构件(或选定的阵列构件)接触,从而在微流体系统中提供多个化学反应。
-
公开(公告)号:US08440369B2
公开(公告)日:2013-05-14
申请号:US13551230
申请日:2012-07-17
IPC分类号: H01M4/86
CPC分类号: H01M4/8605 , B82Y30/00 , H01M4/881 , H01M4/8846 , H01M4/8853 , H01M4/8867 , H01M4/90 , H01M4/9075 , H01M4/921 , H01M4/925 , H01M4/926 , H01M8/023 , H01M8/0232 , H01M8/0234 , H01M8/0236 , H01M8/0241 , H01M8/1004 , H01M8/1007 , H01M8/1011 , H01M8/1086 , Y02E60/523 , Y02P70/56 , Y10S977/762 , Y10S977/948
摘要: The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
-
公开(公告)号:US08425803B2
公开(公告)日:2013-04-23
申请号:US12590619
申请日:2009-11-09
申请人: J. Wallace Parce , Paul Bernatis , Robert Dubrow , William P. Freeman , Joel Gamoras , Shihai Kan , Andreas Meisel , Baixin Qian , Jeffery A. Whiteford , Jonathan Ziebarth
发明人: J. Wallace Parce , Paul Bernatis , Robert Dubrow , William P. Freeman , Joel Gamoras , Shihai Kan , Andreas Meisel , Baixin Qian , Jeffery A. Whiteford , Jonathan Ziebarth
CPC分类号: C09K11/02 , B82Y20/00 , B82Y30/00 , C01B19/007 , C01G9/08 , C01P2002/72 , C01P2002/84 , C01P2004/04 , C01P2004/64 , C01P2004/80 , C01P2004/84 , C09K11/565 , C09K11/70 , C09K11/883 , G02B1/11 , G02B3/0087 , G02B2207/101 , H01L33/502 , Y10S977/783
摘要: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.
摘要翻译: 提供掺杂半导体纳米晶体的矩阵。 在某些实施方案中,半导体纳米晶体具有使其吸收或发射特定波长的光的尺寸和组成。 纳米晶体可以包括允许与各种基质材料(包括聚合物)混合的配体,使得最小部分的光被基质散射。 本发明的基质也可用于折射率匹配应用。 在其它实施例中,将半导体纳米晶体嵌入在基质内以形成纳米晶体密度梯度,从而产生有效的折射率梯度。 本发明的基质也可以用作光学器件上的滤光片和抗反射涂层以及下变换层。 还提供了用于生产包含半导体纳米晶体的基质的方法。 还描述了具有高量子效率,小尺寸和/或窄尺寸分布的纳米结构,以及生产具有II-VI族壳的磷化铟纳米结构和核 - 壳纳米结构的方法。
-
公开(公告)号:US08283412B2
公开(公告)日:2012-10-09
申请号:US12799813
申请日:2010-04-29
CPC分类号: C01B25/087 , B82Y30/00 , B82Y40/00 , C07D303/06 , C07D303/24 , C07D407/12 , C07D407/14 , C08G77/14 , C08G77/26 , C08L83/04 , C08L83/08 , C09K11/02 , C09K11/025 , C09K11/565 , C09K11/70 , C09K11/883 , H01L31/02322 , H01L31/0272 , H01L31/0296 , H01L31/035218 , H01L31/035227 , H01L31/055 , H01L33/54 , H01L33/56 , Y02E10/50 , Y02E10/52 , Y10S977/773 , Y10S977/774 , Y10S977/896 , Y10S977/90
摘要: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes are optionally formed from the ligands. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.
摘要翻译: 提供掺杂半导体纳米晶体的矩阵。 在某些实施方案中,半导体纳米晶体具有使其吸收或发射特定波长的光的尺寸和组成。 纳米晶体可以包括允许与各种基质材料(包括聚合物)混合的配体,使得最小部分的光被基质散射。 该基质任选地由配体形成。 本发明的基质也可用于折射率匹配应用。 在其它实施例中,将半导体纳米晶体嵌入在基质内以形成纳米晶体密度梯度,从而产生有效的折射率梯度。 本发明的基质也可以用作光学器件上的滤光片和抗反射涂层以及下变换层。 还提供了用于生产包含半导体纳米晶体的基质的方法。 还描述了具有高量子效率,小尺寸和/或窄尺寸分布的纳米结构,以及生产具有II-VI族壳的磷化铟纳米结构和核 - 壳纳米结构的方法。
-
公开(公告)号:US20120204964A1
公开(公告)日:2012-08-16
申请号:US13453829
申请日:2012-04-23
IPC分类号: F17D3/00
CPC分类号: B01L3/502784 , B01L3/5027 , B01L3/502746 , B01L2200/0673 , B01L2200/0684 , B01L2200/141 , B01L2300/0816 , B01L2300/105 , B01L2300/14 , B01L2400/0415 , B01L2400/0487 , B01L2400/049 , B01L2400/084 , G01N27/44791 , G01N35/08 , G01N2035/00237 , G01N2035/1034 , Y10T137/0324 , Y10T137/0391 , Y10T436/2575
摘要: The invention provides methods of controlling environmental conditions within a fluidic system, where such environmental conditions can affect the operation of the system in its desired function, and fluidic channels, devices, and systems that are used in practicing these methods. Such methods are generally directed to environmental control fluids, the movement of such fluids through these systems, and the interaction of these fluids with other components of the system, e.g., other fluids or solid components of the system.
摘要翻译: 本发明提供了控制流体系统内的环境条件的方法,其中这种环境条件可以影响系统在其期望功能中的操作,以及用于实施这些方法的流体通道,装置和系统。 这种方法通常涉及环境控制流体,这些流体通过这些系统的运动,以及这些流体与系统的其它部件(例如系统的其它流体或固体组分)的相互作用。
-
公开(公告)号:US20120068118A1
公开(公告)日:2012-03-22
申请号:US13277361
申请日:2011-10-20
申请人: J. Wallace Parce , Paul Bernatis , Robert Dubrow , William P. Freeman , Joel Gamoras , Shihai Kan , Andreas Meisel , Baixin Qian , Jeffery A. Whiteford , Jonathan Ziebarth
发明人: J. Wallace Parce , Paul Bernatis , Robert Dubrow , William P. Freeman , Joel Gamoras , Shihai Kan , Andreas Meisel , Baixin Qian , Jeffery A. Whiteford , Jonathan Ziebarth
CPC分类号: C09K11/02 , B82Y20/00 , B82Y30/00 , C01B19/007 , C01G9/08 , C01P2002/72 , C01P2002/84 , C01P2004/04 , C01P2004/64 , C01P2004/80 , C01P2004/84 , C09K11/565 , C09K11/70 , C09K11/883 , G02B1/11 , G02B3/0087 , G02B2207/101 , H01L33/502 , Y10S977/783
摘要: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.
摘要翻译: 提供掺杂半导体纳米晶体的矩阵。 在某些实施方案中,半导体纳米晶体具有使其吸收或发射特定波长的光的尺寸和组成。 纳米晶体可以包括允许与各种基质材料(包括聚合物)混合的配体,使得最小部分的光被基质散射。 矩阵也可用于折射率匹配应用。 在其它实施例中,将半导体纳米晶体嵌入在基质内以形成纳米晶体密度梯度,从而产生有效的折射率梯度。 该基质也可用作光学器件上的滤光片和抗反射涂层以及下变换层。 还提供了用于生产包含半导体纳米晶体的基质的方法。 还描述了具有高量子效率,小尺寸和/或窄尺寸分布的纳米结构,以及生产具有II-VI族壳的磷化铟纳米结构和核 - 壳纳米结构的方法。
-
-
-
-
-
-
-
-
-