Abstract:
Layout methods for a substrate are disclosed. In one embodiment, the method includes: defining a first plating line on a non-conducting layer coupled to a first pad; and defining a second plating line on the first conducting layer coupled to a second pad. Along a direction away from the first pad and the second pad, a distance between the first plating line and the second plating line becomes longer. In another embodiment, the method includes: defining a plating line on a non-conducting layer, the plating line being coupled to a pad; and replacing a portion of at least a conducting layer with a non-conducting material, wherein the portion is directly under the plating line.
Abstract:
A printed circuit board assembly includes: a substrate; a main signal line formed on the substrate to transmit a signal; an SMD mounted on the substrate; a pad interposed between the SMD and the substrate; and a sub signal line provided on the substrate to electrically connect the main signal line with the pad, and having a width different from that of the main signal line. Thus, the printed circuit board assembly transmits a signal at a high speed and enhancing reliability and an economical efficiency of a product using the printed circuit board assembly.
Abstract:
A circuit board suitable for being electrically connected to a chip package is provided. The chip package has a chip pad and a plurality of inner leads. The circuit board includes at least one patterned conductive layer and at least one insulating layer. The patterned conductive layer has at least one first pad and at least one second pad. The first pad has an extension part and is suitable for being electrically connected to the chip pad. The second pad is suitable for being electrically connected to one end of at least one of the inner leads, while the other end of the inner lead suitable for being electrically connected to the second pad has a projection at least partially overlapping the extension part on the patterned conductive layer. Moreover, the patterned conductive layer is disposed outside the insulating layer.
Abstract:
A high frequency coax via structure is configured with a stripped semi-rigid cable (no shield), and an inductive compensation loop to mitigate transition discontinuity between that via structure's center conductor and the pad to which the center conductor is connected. The performance of top-to-bottom microwave transitions at high frequencies (e.g., 1 to 12 GHz) for such boards is enhanced. A non-metallized via hole embodiment that is configured with surrounding ground vias provides a greater degree of compensation for connection pads associated with greater capacitance (such as those coupled to a component).
Abstract:
An apparatus and method for extending a cover layer formation with respect to a solder pad portion on an electrical lead suspension (ELS). The method provides a base-metal layer for the ELS. A dielectric layer is also provided above the base-metal layer, the dielectric layer covering a portion of the base-metal layer. A signal conductive layer is provided above dielectric layer. The signal conductive layer carries at least one solder pad portion. A cover layer is also provided over the portions of the dielectric layer not having a solder pad portion thereon, the cover layer reducing the possibility of forming an unwanted electric bridge and reducing damage to the dielectric layer during a solder reflow process.
Abstract:
In some embodiments, a voltage grading and shielding method for a high voltage component, is provided. In some embodiments, the method includes configuring at least one first track constructed of a metal or an alloy, at a first location predetermined from the mounting position of the high voltage component, and at least one second track constructed of a metal or an alloy thereof, at a second location predetermined along the length of the high voltage component. In some embodiments, the configured at least one first track substantially reduces the stray capacitance effect and the at least one second track produces a substantially linear voltage distribution along the length of the high voltage component.
Abstract:
In a capacitor-mounted wiring board, a plurality of wiring layers each patterned in a required shape are stacked with insulating layers interposed therebetween and are connected to each other via conductors formed to pierce the insulating layers in the direction of thickness. A decoupling capacitor is electrically connected to a wiring layer used as a power supply line or a ground line in the vicinity of the wiring layer, and mounted such that, when a current is passed through the capacitor, the direction of the current is reversed to that of the current flowing through the relevant wiring layer.
Abstract:
A signal channel extends from motherboard to a daughter card across an edge connection. The daughter card includes a conductive plane that is held at a constant electrical potential. In order to compensate for a number of sources of inductance within the signal line at the edge connection, a circuit trace forming a portion of the signal channel includes an enlarged portion, spaced inward along the daughter card from the contact tabs forming the edge connection, that adds capacitive coupling of the signal channel with the conductive plane.
Abstract:
A method and apparatus that provides improved loop inductance of decoupling capacitors. Vias are moved close to the pads and close to each other. Instead of placing power and ground vias on opposite sides of the capacitor, these vias are moved around to the same side of the capacitor and are placed as close to each other as manufacturing tolerances will allow. For designs using standard two-terminal surface mount capacitors, two vias per capacitor, and standard manufacturing procedures (no vias inside pads, for example), the lowest possible loop inductance of the capacitor's connections to the printed circuit board planes is provided. This results in the lowest effective capacitor series input inductance.
Abstract:
A technique to simultaneously reduce high-frequency insertion loss and cross-talk for a multi-layered add-in card is disclosed. The technique is based on selective removal of ground and power planes beneath the edge fingers. This selective removal of power and ground planes removes excess capacitance at the edge fingers, lowering the insertion loss at high frequencies, while maintaining an impedance match with an associated connector. Simultaneously, the leftover metallic ground/power plane provides electromagnetic shielding and thus reduces the cross-talk between the differential pairs. Optimum performance of the connector with minimized insertion loss and cross-talk can be obtained for high-speed analog and digital applications.