Abstract:
A method for fabricating a device, the method including: providing a first layer including first transistors wherein the first transistors include mono-crystalline semiconductor and first alignment marks; overlaying a second semiconductor layer over the first layer, wherein the second layer includes second transistors, the second transistors include mono-crystalline semiconductor and are configured to be memory cells, at least one of the memory cells include a floating body region configured to be charged to a level indicative of a state of the memory cell, and fabricating the second transistors includes alignment to the first alignment marks.
Abstract:
A device, including: a first layer of first transistors, overlaid by at least one interconnection layer, wherein the interconnection layer includes metals such as copper or aluminum; a second layer including second transistors, the second layer overlaying the interconnection layer, wherein the second layer is less than about 0.4 micron thick; and a connection path connecting the second transistors to the interconnection layer, wherein the connection path includes at least one through-layer via, and the through-layer via includes material whose co-efficient of thermal expansion is within about 50 percent of the second layer coefficient of thermal expansion.
Abstract:
Re-programmable antifuses and structures utilizing re-programmable antifuses are presented herein. Such structures include a configurable interconnect circuit having at least one re-programmable antifuse, wherein the at least one re-programmable antifuse is configured to be programmed to conduct by applying a first voltage across it and is configured to be re-programmed not to conduct by applying second voltage across it, wherein the second voltage is higher than the first voltage. Additionally, the re-programmable antifuses may be configured to a permanently conductive state by applying an even higher voltage across it.
Abstract:
A semiconductor device comprising: a first single crystal silicon layer comprising first transistors, first alignment mark, and at least one metal layer overlying said first single crystal silicon layer, wherein said at least one metal layer comprises copper or aluminum more than other materials; a second layer overlying said at least one metal layer, said second layer comprising second transistors, second alignment mark, and a through via through said second layer, wherein said through via is a part of a connection path between said first transistors and said second transistors, wherein alignment of said through via is based on said first alignment mark and said second alignment mark and effected by a distance between said first alignment mark and said second alignment mark.
Abstract:
Systems and methods are disclosed for fabricating a semiconductor device, includes implanting one or more regions on a semiconductor wafer; performing a layer transfer onto a carrier; and transferring from said carrier to a target wafer.
Abstract:
A system includes a semiconductor device. The semiconductor device includes a first semiconductor layer comprising first transistors, wherein the first transistors are interconnected by at least one metal layer comprising aluminum or copper. The second mono-crystallized semiconductor layer includes second transistors and is overlaying the at least one metal layer, wherein the second mono-crystallized semiconductor layer is less than 150 nm in thickness, and at least one of the second transistors is an N-type transistor and at least one of the second transistors is a P-type transistor.
Abstract:
A method of manufacturing a semiconductor wafer, the method including: providing a first monocrystalline layer including first transistors and interconnecting metal layers to perform at least one first electronic function; providing a second monocrystalline layer on top of the metal layers, wherein the second monocrystalline layer includes second transistors to perform at least one second electronic function and substituting the at least one first electronic function with the at least one second electronic function.
Abstract:
A method of manufacturing a semiconductor wafer, the method comprising: providing a base wafer comprising a semiconductor substrate, metal layers and first alignment marks; transferring a monocrystalline layer on top of said metal layers, wherein said monocrystalline layer comprises second alignment marks; and performing a lithography using an alignment based on a misalignment between said first alignment marks and said second alignment marks.
Abstract:
A semiconductor device comprising: a first single crystal silicon layer comprising first transistors, first alignment marks, and at least one metal layer overlying the first single crystal silicon layer, wherein the at least one metal layer comprises copper or aluminum more than other materials; and a second single crystal silicon layer overlying the at least one metal layers; wherein the second single crystal silicon layer comprises a plurality of second transistors arranged in substantially parallel bands wherein each of a plurality of the bands comprises a portion of the second transistors along an axis in a repeating pattern.