Abstract:
A method for fabricating a 3D (three-dimensional) structure is disclosed to provide hydrophobicity to a surface of a 3D structure by using a dipping method in which a predetermined-shaped structure is immersed in a molten metal solution. The method includes: immersing a predetermined-shaped structure in a molten metal solution to coat a molten metal material on the surface of the predetermined-shaped structure; anodizing a metal base coated with the molten metal material; coating a polymer material on an outer surface of the metal-coated base to form a negative replica structure; covering an outer surface of the negative replica structure with an outer formation material; and removing the metal-coated base from the negative replica structure and the outer formation material.
Abstract:
A method for fabricating a 3D (three-dimensional) structure such that the 3D structure has a surface with hydrophobicity by using a metal foil such as an aluminum foil is disclosed. The method includes preparing a metal foil base by attaching a metal foil on an outer surface of a predetermined-shaped 3D structure; anodizing the metal foil base; coating a polymer material on the outer surface of the metal foil base material to form a negative replica structure; forming an outer structure by covering an outer surface of the negative replica structure with an outer formation material; and removing the metal foil base.
Abstract:
A molecular detection chip including a metal oxide silicon-field effect transistor (MOSFET) on sidewalls of a micro-fluid channel and a molecular detection device including the molecular detection chip are provided. A molecular detection method, particularly, qualification methods for the immobilization of molecular probes and the binding of a target sample to the molecular probes, using the molecular detection device, and a nucleic acid mutation assay device and method are also provided. The formation of the MOSFET on the sidewalls of the micro-fluid channel makes easier to highly integrate a molecular detection chip. In addition, immobilization of probes directly on the surface of a gate electrode ensures the molecular detection chip to check for the immobilization of probes and coupling of a target molecule to the probes in situ.
Abstract:
The present invention relates to a manufacturing method of a three dimensional structure having a hydrophobic inner surface. The manufacturing method includes anodizing a three dimensional metal member and forming fine holes on an external surface of the metal member, forming a replica by coating a non-wetting polymer material on the outer surface of the metal member and forming the non-wetting polymer material to be a replication structure corresponding to the fine holes of the metal member, forming an exterior by surrounding the replication structure with an exterior forming material, and etching the metal member and eliminating the metal member from the replication structure and the exterior forming material.
Abstract:
A method and apparatus for amplifying nucleic acids. The method includes introducing into a reaction vessel via different inlet channels a reactant aqueous solution containing reactants for nucleic acid amplification and a fluid that is phase-separated from the reactant aqueous solution and does not participate in amplification reaction, creating a plurality of reactant aqueous solution droplets surrounded by the fluid by contacting the reactant aqueous solution with the fluid in the reaction vessel, and amplifying the nucleic acids in the reactant aqueous solution droplets. The apparatus includes a substrate, a reaction vessel formed inside of the substrate, at least one first inlet channel formed inside the substrate, connected to an end of the reaction vessel, and allowing introduction of a reactant aqueous solution containing reactants for nucleic acid amplification into the reaction vessel, a second inlet channel formed inside the substrate, connected to the end of the reaction vessel, and allowing introduction of a fluid that is phase-separated from the reactant aqueous solution and does not participate in amplification reaction into the reaction vessel, and a heating unit installed on the substrate in such a way to thermally contact with the substrate and heating the substrate.
Abstract:
A molecular detection chip including a metal oxide silicon-field effect transistor (MOSFET) on sidewalls of a micro-fluid channel and a molecular detection device including the molecular detection chip are provided. A molecular detection method, particularly, qualification methods for the immobilization of molecular probes and the binding of a target sample to the molecular probes, using the molecular detection device, and a nucleic acid mutation assay device and method are also provided. The formation of the MOSFET on the sidewalls of the micro-fluid channel makes easier to highly integrate a molecular detection chip. In addition, immobilization of probes directly on the surface of a gate electrode ensures the molecular detection chip to check for the immobilization of probes and coupling of a target molecule to the probes in situ.
Abstract:
Provided are an apparatus for circulating a carrier fluid having two or more chambers or sections, an apparatus for amplifying a nucleic acid using the same, and a chip containing the same. The apparatus for circulating a carrier fluid includes two or more chambers maintained at different temperatures, each chamber having an inlet valve containing a pneumatic air pressure port for controlling inflow of the carrier fluid to the chamber (inlet pneumatic air pressure port), and an outlet valve containing a pneumatic air pressure for controlling outflow of the carrier fluid from the chamber (outlet pneumatic air pressure port), wherein the chambers are sequentially connected such that the outlet valve of one chamber is connected to the inlet valve of an adjacent chamber in a direction the fluid flows.
Abstract:
Provided are a method and apparatus for amplifying nucleic acids. The method includes introducing into a reaction vessel via different inlet channels a reactant aqueous solution containing reactants for nucleic acid amplification and a fluid that is phase-separated from the reactant aqueous solution and does not participate in amplification reaction, creating a plurality of reactant aqueous solution droplets surrounded by the fluid by contacting the reactant aqueous solution with the fluid in the reaction vessel, and amplifying the nucleic acids in the reactant aqueous solution droplets. The apparatus includes a substrate, a reaction vessel formed inside of the substrate, at least one first inlet channel formed inside the substrate, connected to an end of the reaction vessel, and allowing introduction of a reactant aqueous solution containing reactants for nucleic acid amplification into the reaction vessel, a second inlet channel formed inside the substrate, connected to the end of the reaction vessel, and allowing introduction of a fluid that is phase-separated from the reactant aqueous solution and does not participate in amplification reaction into the reaction vessel, and a heating unit installed on the substrate in such a way to thermally contact with the substrate and heating the substrate.
Abstract:
The present invention relates to a nucleic acid extracting apparatus, and the nucleic acid extracting apparatus can include a pipe-shaped tube having an open outlet at one side thereof, and a hydrogel column that is provided inside the tube and filters impurities excluding an extraction target material.
Abstract:
The present invention relates to a three-dimensional structure manufacturing method for performing surface treatment processes, and a replication step to provide hydrophobicity on an external surface of the three-dimensional structure. In the manufacturing method, the hydrophobicity may be provided to the external surface of the three-dimensional structure, a high cost device required in the conventional MEMS process is not used, the manufacturing cost is reduced, and the manufacturing process is simplified. In addition, it has been difficult to provide the hydrophobicity on an external surface of a three-dimensional structure having a large surface due to a spatial limitation, but in the exemplary embodiment of the present invention, the hydrophobicity may be provided to the external surface of the three-dimensional structure having a large surface, such as a torpedo, a submarine, a ship, and a vehicle, without the spatial limitation.