Abstract:
A conductive ink may include a nickel component, a polycarboxylic acid component, and a polyol component, the polycarboxylic acid component and the polyol component being reactable to form a polyester component. The polyester component may be formed in situ in the conductive ink from a polyol component and a polycarboxylic acid component. The conductive ink may include a carbon component. The conductive ink may include an additive component. The conductive ink may include nickel flakes, graphene flakes, glutaric acid, and ethylene glycol. The conductive ink may be printed (e.g., screen printed) on a substrate and cured to form a conductive film. A conductive film may include a nickel component and a polyester component.
Abstract:
LED modules are disclosed having a control MOSFET, or other transistor, in series with an LED. In one embodiment, a MOSFET wafer, containing an array of vertical MOSFETS, is aligned and bonded to an LED wafer, containing a corresponding array of vertical LEDs, and singulated to form thousands of active 3-terminal LED modules with the same footprint as a single LED. Despite the different forward voltages of red, green, and blue LEDs, RGB modules may be connected in parallel and their control voltages staggered at 60 Hz or greater to generate a single perceived color, such as white. The RGB modules may be connected in a panel for general illumination or for a color display.
Abstract:
An energy storage device can include a cathode having a first plurality of frustules, where the first plurality of frustules can include nanostructures having an oxide of manganese. The energy storage device can include an anode comprising a second plurality of frustules, where the second plurality of frustules can include nanostructures having zinc oxide. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include an oxide of manganese. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include zinc oxide. An electrode for an energy storage device includes a plurality of frustules, where each of the plurality of frustules can have a plurality of nanostructures formed on at least one surface.
Abstract:
A first layer of first vertical light emitting diodes (VLEDs) is printed on a conductor surface. A first transparent conductor layer is deposited over the first VLEDs to electrically contact top electrodes of the first VLEDs. A second layer of second VLEDs is printed on the first transparent conductor layer. Since the VLEDs are printed as an ink, the second VLEDs are not vertically aligned with the first VLEDs, so light from the first VLEDs is not substantially blocked by the second VLEDs when the VLEDs are turned on. A second transparent conductor layer is deposited over the second VLEDs to electrically contact top electrodes of the second VLEDs. By this structure, the first VLEDs are connected in parallel, the second VLEDs are connected in parallel, and the first layer of first VLEDs and the second layer of second VLEDs are connected in series by the first transparent conductor layer.
Abstract:
An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary apparatus comprises: a plurality of diodes; at least a trace amount of a first solvent; and a polymeric or resin film at least partially surrounding each diode of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
Abstract:
A method of forming a light sheet includes printing a layer of inorganic LEDs on a first conductive surface of a substrate, depositing a first dielectric layer, and depositing a second conductor layer over the LEDs so that the LEDs are connected in parallel. At least one of the first conductive surface or the second conductor layer is transparent to allow light to escape. A phosphor layer may be formed over the light sheet so that the LED light mixed with the phosphor light creates white light. The flat light sheet is then folded, such as by molding, to form a three-dimensional structure with angled light emitting walls and reflective surfaces to control a directionality of the emitted light and improve the mixing of light. The folds may form rows of angled walls or polygons.
Abstract:
An energy storage device, such as a silver oxide battery, can include a silver-containing cathode and an electrolyte having an ionic liquid. An anion of the ionic liquid is selected from the group consisting of: methanesulfonate, methylsulfate, acetate, and fluoroacetate. A cation of the ionic liquid can be selected from the group consisting of: imidazolium, pyridinium, ammonium, piperidinium, pyrrolidinium, sulfonium, and phosphonium. The energy storage device may include a printed or non-printed separator. The printed separator can include a gel including dissolved cellulose powder and the electrolyte. The non-printed separator can include a gel including at least partially dissolved regenerate cellulose and the electrolyte. An energy storage device fabrication process can include applying a plasma treatment to a surface of each of a cathode, anode, separator, and current collectors. The plasma treatment process can improve wettability, adhesion, electron and/or ionic transport across the treated surface.
Abstract:
An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary method of making a liquid or gel suspension of diodes comprises: adding a viscosity modifier to a plurality of diodes in a first solvent; and mixing the plurality of diodes, the first solvent and the viscosity modifier to form the liquid or gel suspension of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
Abstract:
An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary diode comprises: a light emitting or absorbing region having a diameter between about 20 and 30 microns and a height between 2.5 to 7 microns; a plurality of first terminals spaced apart and coupled to the light emitting region peripherally on a first side, each first terminal of the plurality of first terminals having a height between about 0.5 to 2 microns; and one second terminal coupled centrally to a mesa region of the light emitting region on the first side, the second terminal having a height between 1 to 8 microns.
Abstract:
A system of interlocking LED panel tiles includes a first tile having at least one layer of light emitting diodes (LEDs) provided on a substrate, where the substrate is mounted on a substantially rectangular supporting plate having interlocking features. The substrate overlaps the interlocking features. The first tile has a set of positive and negative voltage conductors running between the two sets of opposite edges of the tile as busses. Multiple identical tiles are provided. Each tile has the interlocking features along their edges that firmly physically connect to abutting tiles to create a lamp having any pattern of tiles selected by the user. By interlocking the tiles, the positive and negative conductors are automatically connected to electrically connect the LEDs in the tiles in parallel, and the interlocking features are hidden by the overlying substrate. Additional conductors may be used to provide greater interconnection flexibility.