Abstract:
A semiconductor package includes a lower package including a lower semiconductor chip on a lower package substrate, an upper package on the lower package, and a heat interface material between the lower package and the upper package. The upper package includes an upper semiconductor chip on an upper package substrate including a center portion adjacent to the lower semiconductor chip and an edge portion. The heat interface material is in contact with a top surface of the lower semiconductor chip and the upper package substrate. The upper package substrate includes a heat diffusion via penetrating the center portion and an interconnection via penetrating the edge portion. The interconnection via is spaced apart from the heat diffusion via.
Abstract:
In a package-on-package (PoP) device according to the inventive concepts, an anisotropic conductive film is disposed between a lower semiconductor package and an upper semiconductor package to remove an air gap between the lower and upper semiconductor packages. Thus, heat generated from a lower semiconductor chip may be rapidly and smoothly transmitted toward the upper semiconductor package, thereby increasing or maximizing a heat exhaust effect of the PoP device.
Abstract:
A semiconductor package device includes a lower package including a lower semiconductor chip mounted on the lower package substrate, a lower molding compound layer disposed on the lower package substrate, a first trench formed in the lower molding compound layer to surround the lower semiconductor chip, and a second trench connected to the first trench to extend to an outer wall of the lower package, the second trench being formed in the lower molding compound layer, an upper package disposed on the lower package. The upper package includes an upper package substrate and at least one upper semiconductor chip mounted on the upper package substrate and a heat transfer member disposed between the lower package and the upper package.
Abstract:
According to example embodiments, a semiconductor package includes a lower package, upper packages on the lower package and laterally spaced apart from each other, a lower heat exhaust part between the lower package and the upper packages, an intermediate heat exhaust part between the upper packages and connected to the lower heat exhaust part, and an upper heat exhaust part on the upper packages and connected to the intermediate heat exhaust part.
Abstract:
The inventive concepts provide package-on-package (PoP) devices. In the PoP devices, an interposer substrate and a thermal boundary material layer may be disposed between a lower semiconductor package and an upper semiconductor package to rapidly exhaust heat generated from a lower semiconductor chip included in the lower semiconductor package. The interposer substrate may be formed of one or more insulating layers, conductive vias, heat dissipating members, protection layers, and various conductive patterns.
Abstract:
A semiconductor package includes a lower package including a lower semiconductor chip on a lower package substrate, an upper package on the lower package, and a heat interface material between the lower package and the upper package. The upper package includes an upper semiconductor chip on an upper package substrate including a center portion adjacent to the lower semiconductor chip and an edge portion. The heat interface material is in contact with a top surface of the lower semiconductor chip and the upper package substrate. The upper package substrate includes a heat diffusion via penetrating the center portion and an interconnection via penetrating the edge portion. The interconnection via is spaced apart from the heat diffusion via.
Abstract:
Semiconductor package are provided. In one embodiment, the semiconductor package may include a substrate such as a circuit substrate, a semiconductor chip mounted on the circuit substrate, a molding (or an encapsulant) covering the semiconductor chip and the circuit substrate and including a first temperature control member, and a heat dissipation member covering the molding.
Abstract:
Provided are a semiconductor package and a method of manufacturing the same. a substrate including a first face and a second face, wherein the first and second faces face each other; a first ground pattern disposed on the first face; a second ground pattern disposed on the second face; a plurality of ground via plugs which connect the first ground pattern and the second ground pattern, wherein the plurality of ground via plugs penetrate the substrate; and a first aluminum oxide film interposed between the plurality of ground via plugs, wherein a ground voltage is applied to the plurality of ground via plugs. The semiconductor package may be manufactured using an anodic oxidation process.
Abstract:
Disclosed are a semiconductor package and a method of manufacturing the same. The semiconductor package comprises a package cap which is capable of radiating high temperatures and performs a shield function preventing transmission of electromagnetic waves into and/or out of the semiconductor package. The semiconductor package including the package cap prevents chip malfunctions and improves device reliability. The package cap is positioned to cover first and second semiconductor chips of a semiconductor package.