Abstract:
Embodiments of the invention disclose a system and a method for determining a pose of a probe relative to an object by probing the object with the probe, comprising steps of: determining a probability of the pose using Rao-Blackwellized particle filtering, wherein a probability of a location of the pose is represented by a location of each particle, and a probability of an orientation of the pose is represented by a Gaussian distribution over orientation of each particle conditioned on the location of the particle, wherein the determining is performed for each subsequent probing until the probability of the pose concentrates around a particular pose; and estimating the pose of the probe relative to the object based on the particular pose.
Abstract:
A method of manufacturing an electronic component device, includes the steps of preparing a wiring substrate, which includes a silicon substrate, a concave portion provided on its upper surface side, a through hole formed to penetrate the silicon substrate on a bottom surface side of the concave portion, an insulating layer formed on the silicon substrate, a penetration electrode constructed by a lower conductor portion formed to a halfway position of a height direction from a bottom portion of the through hole and a connection metal member (indium layer) formed on the lower conductor portion in the through hole, and an electronic component having a terminal metal member (gold bump) on a lower surface side, and softening the connection metal member of the wiring substrate in a heating atmosphere and then sticking the terminal metal member of the electronic component into the connection metal member and connecting thereto.
Abstract:
In a semiconductor device 100, a light emitting element 120 has been mounted on an upper plane of a semiconductor substrate 102. In an impurity diffusion region of the semiconductor substrate 102, a P conducting type of a layer 104, and an N layer 106 have been formed, while an N conducting type impurity is implanted to the P layer 104, and then the implanted impurity is diffused to constitute the N layer 106. A zener diode 108 made of a semiconductor device has been formed by the P layer 104 and the N layer 106.
Abstract:
A single camera acquires an input image of a scene as observed in an array of spheres, wherein pixels in the input image corresponding to each sphere form a sphere image. A set of virtual cameras are defined for each sphere on a line joining a center of the sphere and a center of projection of the camera, wherein each virtual camera has a different virtual viewpoint and an associated cone of rays, appearing as a circle of pixels on its virtual image plane. A projective texture mapping of each sphere image is applied to all of the virtual cameras on the virtual image plane to produce a virtual camera image comprising circle of pixels. Each virtual camera image for each sphere is then projected to a refocusing geometry using a refocus viewpoint to produce a wide-angle lightfield view, which are averaged to produce a refocused wide-angle image.
Abstract:
A storage subsystem includes: a controller; a first logical storage area corresponding to a RAID group configured by a plurality of storage devices; and a second logical storage area corresponding to a plurality of the RAID groups each configured by the plurality of storage devices, and storing a copy of data stored in the first logical storage area. In the storage subsystem, the first and second logical storage areas form a copy group, and for starting copying from the first to second logical storage area, the controller performs a mode change, from a power saving mode to a ready mode, to the plurality of storage devices configuring the plurality of RAID groups corresponding to the second logical storage area. With such a storage subsystem, the time can be reduced for activating copy-destination storage devices to which a power saving function is applied, and the copy time is thus favorably reduced.
Abstract:
Proposed is an operation method for seeking a power interruption operation target in which MTBF will become longest. When a target value regarding a power interruption time and a target value regarding a power interruption count per 24 hours is input from an administrator to a management computer, the management computer calculates the MTBF after one year and the annual power consumption for each of the input target values, and, as a power interruption operation target in which the MTBF will become longest in one year, a target value regarding a power interruption time and a target value regarding a power interruption count are respectively selected among multiple target values in which the MTBF will become longest based on each of the calculation results, and displayed on a screen of an output unit.
Abstract:
Conventionally, no consideration was given to the control of the main power supply circuit in a storage apparatus. Thus, unnecessary electric power will be consumed because it is not possible to inhibit the power consumption of the main power supply circuit of the storage apparatus. With this storage system having a plurality of storage apparatuses, a storage apparatus internally has a power supply control program for controlling the respective components and the main power supply circuit, and the power supply control command program provided to the management computer migrates a storage extent to be used for business to another storage apparatus based on the operation schedule of business to use the storage extent of the storage apparatus, and commands the power supply control of the main power supply circuit in the storage apparatuses and the respective components.
Abstract:
A wiring substrate manufactured by thinning a silicon substrate, which is coated by an insulation film, from a lower surface to an upper surface to form a substrate body. The substrate body is etched using a resist, which includes an opening, as a mask and the insulation film as an etching stopper layer to form a through hole and a cover, which covers an opening of the through hole at the upper surface of the substrate body. In a state in which the cover is formed, a functional element is formed on the upper surface of a further insulation film at the upper side of the substrate body. Then, a through electrode is formed in at least the through hole.
Abstract:
A semiconductor package includes a wiring board and a semiconductor device mounted on the wiring board. At least one penetration hole extends from one surface of the semiconductor chip to an opposite surface of the semiconductor chip. A penetration electrode is situated inside the penetration hole without contacting a wall of the penetration hole. The penetration electrode has one end fixed to the one surface of the semiconductor chip and an opposite end protruding from the opposite surface of the semiconductor chip. A connection terminal is formed on the opposite end of the penetration electrode and electrically connected to the wiring board.
Abstract:
A light-emitting device including a light-emitting element and a substrate where the light-emitting element is arranged. A housing part housing the light-emitting element and having a shape that is tapered upward from the substrate and a metal frame surrounding the light-emitting element and including the side face of the housing part made into an almost mirror-polished surface are provided on the substrate.