Abstract:
Implementations described herein generally relate to a method for forming a metal layer and to a method for forming an oxide layer on the metal layer. In one implementation, the metal layer is formed on a seed layer, and the seed layer helps the metal in the metal layer nucleate with small grain size without affecting the conductivity of the metal layer. The metal layer may be formed using plasma enhanced chemical vapor deposition (PECVD) and nitrogen gas may be flowed into the processing chamber along with the precursor gases. In another implementation, a barrier layer is formed on the metal layer in order to prevent the metal layer from being oxidized during subsequent oxide layer deposition process. In another implementation, the metal layer is treated prior to the deposition of the oxide layer in order to prevent the metal layer from being oxidized.
Abstract:
Methods for forming thin films in high aspect ratio feature definitions are provided. In one implementation, a method of processing a substrate in a process chamber is provided. The method comprises flowing a metal organic containing precursor gas comprising a ligand into an interior processing volume of a process chamber, flowing a precursor gas comprising the ligand into the processing volume and thermally decomposing the metal-containing precursor gas comprising the ligand and the precursor gas comprising the ligand in the interior processing volume to deposit a metal-containing layer over at least one or more sidewalls and a bottom surface of a feature definition in and below a surface of a dielectric layer on the substrate.
Abstract:
Implementations disclosed herein generally relate to methods of forming silicon oxide films. The methods can include performing silylation on the surface of the substrate having terminal hydroxyl groups. The hydroxyl groups on the surface of the substrate are then regenerated using a plasma and H2O soak in order to perform an additional silylation. Further methods include catalyzing the exposed surfaces using a Lewis acid, directionally inactivating the exposed first and second surfaces and deposition of a silicon containing layer on the sidewall surfaces. Multiple plasma treatments may be performed to deposit a layer having a desired thickness.
Abstract:
Embodiments described herein provide a method for sealing a porous low-k dielectric film. The method includes forming a sealing layer on the porous low-k dielectric film using a cyclic process. The cyclic process includes repeating a sequence of depositing a sealing layer on the porous low-k dielectric film and treating the sealing layer until the sealing layer achieves a predetermined thickness. The treating of each intermediate sealing layer generates more reactive sites on the surface of each intermediate sealing layer, which improves the quality of the resulting sealing layer.
Abstract:
Embodiments of the present invention generally relate to methods of forming carbon-doped oxide films. The methods generally include generating hydroxyl groups on a surface of the substrate using a plasma, and then performing silylation on the surface of the substrate. The hydroxyl groups on the surface of the substrate are then regenerated using a plasma in order to perform an additional silylation. Multiple plasma treatments and silylations may be performed to deposit a layer having a desired thickness.
Abstract:
Embodiments of the invention generally provide methods for sealing pores at a surface of a dielectric layer formed on a substrate. In one embodiment, the method includes exposing a dielectric layer formed on a substrate to a first pore sealing agent, wherein the first pore sealing agent contains a compound with a general formula CxHyOz, where x has a range of between 1 and 15, y has a range of between 2 and 22, and z has a range of between 1 and 3, and exposing the substrate to UV radiation in an atmosphere of the first pore sealing agent to form a first sealing layer on the dielectric layer.
Abstract translation:本发明的实施方案通常提供了在形成在基底上的电介质层的表面处密封孔的方法。 在一个实施方案中,该方法包括将形成在基底上的电介质层暴露于第一孔密封剂,其中第一孔密封剂含有具有通式C x H y O z的化合物,其中x具有1至15的范围,y具有 在2和22之间的范围,z具有1和3之间的范围,并且在第一孔密封剂的气氛中将基底暴露于UV辐射,以在介电层上形成第一密封层。
Abstract:
Embodiments disclosed herein include a module, comprising: a substrate, wherein the substrate comprises a dielectric material, and a microstrip resonator on the substrate. In an embodiment, a microstrip transmission line is on the substrate adjacent to the microstrip resonator, and the microstrip resonator is spaced from the microstrip transmission line by a gap. In an embodiment, a ground plane on a surface of the substrate is opposite from the microstrip resonator.
Abstract:
Embodiments herein are generally directed to electronic device manufacturing and, more particularly, to systems and methods for forming substantially void-free and seam-free tungsten features in a semiconductor device manufacturing scheme. In one embodiment, a substrate processing system features a processing chamber and a gas delivery system fluidly coupled to the processing chamber. The gas delivery system includes a first radical generator for use in a differential inhibition treatment process where the differential inhibition treatment process includes exposing a substrate to the effluent of a treatment plasma from a halogen free nitrogen-containing gas and a halogen-containing gas.
Abstract:
Embodiments of the invention provide processes to selectively form a cobalt layer on a copper surface over exposed dielectric surfaces. Embodiments described herein control selectivity of deposition by preventing damage to the dielectric surface, repairing damage to the dielectric surface, such as damage which can occur during the cobalt deposition process, and controlling deposition parameters for the cobalt layer.
Abstract:
Embodiments of the present invention generally relate to methods for lowering the dielectric constant of low-k dielectric films used in semiconductor fabrication. In one embodiment, a method for lowering the dielectric constant (k) of a low-k silicon-containing dielectric film, comprising exposing a porous low-k silicon-containing dielectric film to a hydrofluoric acid solution and subsequently exposing the low-k silicon-containing dielectric film to a silylation agent. The silylation agent reacts with Si—OH functional groups in the porous low-k dielectric film to increase the concentration of carbon in the low-k dielectric film.